
ECE 677: Distributed Computing Systems

Distributed Operating Systems:
Design Issues
Case Studies

ECE 677 Salim Hariri/University of Arizona

Distributed Systems Design Framework
(Cont)

Distributed Computing Paradigms (DCP)

Computation Models Communication Models

Functional Parallel Data Parallel Message Passing
Shared Memory

System Architecture and Services (SAS)

Architecture Models System Level Services

Computer Networks and Protocols (CNP)

Computer Networks Communication Protocols

ECE 677 Salim Hariri/University of Arizona

Outline
n  Operating System Services and Designs
n  Distributed System Design Issues
n  Case Studies

Operating System Services
n  One set of operating-system services provides functions that are helpful to

the user:

n  User interface - Almost all operating systems have a user
interface (UI)

n  Varies between Command-Line (CLI), Graphics User
Interface (GUI), Batch

n  Program execution - The system must be able to load a program
into memory and to run that program, end execution, either
normally or abnormally (indicating error)

n  I/O operations - A running program may require I/O, which may
involve a file or an I/O device.

n  File-system manipulation - The file system is of particular
interest. Obviously, programs need to read and write files and
directories, create and delete them, search them, list file
Information, permission management.

Operating System Services (Cont.)
n  One set of operating-system services provides functions that are helpful to

the user (Cont):
n  Communications – Processes may exchange information, on the

same computer or between computers over a network
n  Communications may be via shared memory or through

message passing (packets moved by the OS)
n  Error detection – OS needs to be constantly aware of possible

errors
n  May occur in the CPU and memory hardware, in I/O devices,

in user program
n  For each type of error, OS should take the appropriate action

to ensure correct and consistent computing
n  Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system

Operating System Services (Cont.)
n  Another set of OS functions exists for ensuring the efficient operation of the system

itself via resource sharing
n  Resource allocation - When multiple users or multiple jobs running

concurrently, resources must be allocated to each of them
n  Many types of resources - Some (such as CPU cycles,mainmemory, and file

storage) may have special allocation code, others (such as I/O devices) may
have general request and release code.

n  Accounting - To keep track of which users use how much and what kinds of
computer resources

n  Protection and security - The owners of information stored in a multiuser or
networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

n  Protection involves ensuring that all access to system resources is
controlled

n  Security of the system from outsiders requires user authentication, extends
to defending external I/O devices from invalid access attempts

n  If a system is to be protected and secure, precautions must be instituted
throughout it. A chain is only as strong as its weakest link.

System Calls
n  Programming interface to the services provided by the OS
n  Typically written in a high-level language (C or C++)
n  Mostly accessed by programs via a high-level Application Program

Interface (API) rather than direct system call use
n  Three most common APIs are Win32 API for Windows, POSIX API for

POSIX-based systems (including virtually all versions of UNIX, Linux,
and Mac OS X), and Java API for the Java virtual machine (JVM)

n  Why use APIs rather than system calls?

 (Note that the system-call names used throughout this text are generic)

Example of System Calls
n  System call sequence to copy the contents of one file to

another file

Example of Standard API
n  Consider the ReadFile() function in the
n  Win32 API—a function for reading from a file

A description of the parameters passed to ReadFile()
n  HANDLE file—the file to be read
n  LPVOID buffer—a buffer where the data will be read into and written from
n  DWORD bytesToRead—the number of bytes to be read into the buffer
n  LPDWORD bytesRead—the number of bytes read during the last read
n  LPOVERLAPPED ovl—indicates if overlapped I/O is being used

System Call Implementation
n  Typically, a number associated with each system call

n  System-call interface maintains a table indexed according to
these numbers

n  The system call interface invokes intended system call in
OS kernel and returns status of the system call and any
return values

n  The caller need know nothing about how the system call
is implemented
n  Just needs to obey API and understand what OS will do as a

result call
n  Most details of OS interface hidden from programmer by API

n  Managed by run-time support library (set of functions built
into libraries included with compiler)

API – System Call – OS Relationship

Standard C Library Example
n  C program invoking printf() library call, which calls write()

system call

System Call Parameter Passing
n  Often, more information is required than simply identity of

desired system call
n  Exact type and amount of information vary according to OS and call

n  Three general methods used to pass parameters to the OS
n  Simplest: pass the parameters in registers

n  In some cases, may be more parameters than registers
n  Parameters stored in a block, or table, in memory, and address of

block passed as a parameter in a register
n  This approach taken by Linux and Solaris

n  Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

n  Block and stack methods do not limit the number or length of
parameters being passed

Parameter Passing via Table

Types of System Calls

n  Process control
n  File management
n  Device management
n  Information maintenance
n  Communications

MS-DOS execution

(a) At system startup (b)
running a program

FreeBSD Running Multiple Programs

System Programs
n  System programs provide a convenient environment

for program development and execution. They can
be divided into:
n  File manipulation
n  Status information
n  File modification
n  Programming language support
n  Program loading and execution
n  Communications
n  Application programs

n  Most users’ view of the operation system is defined
by system programs, not the actual system calls

System Programs

n  Provide a convenient environment for program development and
execution
n  Some of them are simply user interfaces to system calls; others are

considerably more complex
n  File management - Create, delete, copy, rename, print, dump, list, and

generally manipulate files and directories
n  Status information

n  Some ask the system for info - date, time, amount of available
memory, disk space, number of users

n  Others provide detailed performance, logging, and debugging
information

n  Typically, these programs format and print the output to the terminal
or other output devices

n  Some systems implement a registry - used to store and retrieve
configuration information

System Programs (cont’d)
n  File modification

n  Text editors to create and modify files
n  Special commands to search contents of files or perform

transformations of the text

n  Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

n  Program loading and execution- Absolute loaders,
relocatable loaders, linkage editors, and overlay-loaders,
debugging systems for higher-level and machine language

n  Communications - Provide the mechanism for creating
virtual connections among processes, users, and computer
systems
n  Allow users to send messages to one another’s screens, browse web

pages, send electronic-mail messages, log in remotely, transfer files
from one machine to another

Operating System Design and Implementation

n  Design and Implementation of OS not “solvable”, but some
approaches have proven successful

n  Internal structure of different Operating Systems can vary
widely

n  Start by defining goals and specifications
n  Affected by choice of hardware, type of system
n  User goals and System goals

n  User goals – operating system should be convenient to use, easy to
learn, reliable, safe, and fast

n  System goals – operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free, and
efficient

Operating System Design and Implementation (Cont.)

n  Important principle to separate
 Policy: What will be done?
Mechanism: How to do it?

n  Mechanisms determine how to do
something, policies decide what will be
done
n  The separation of policy from mechanism is a

very important principle, it allows maximum
flexibility if policy decisions are to be changed
later

Simple Structure

n  MS-DOS – written to provide the most
functionality in the least space
n  Not divided into modules
n  Although MS-DOS has some structure, its

interfaces and levels of functionality are
not well separated

MS-DOS Layer Structure

Layered Approach

n  The operating system is divided into a
number of layers (levels), each built on
top of lower layers. The bottom layer
(layer 0), is the hardware; the highest
(layer N) is the user interface.

n  With modularity, layers are selected such
that each uses functions (operations) and
services of only lower-level layers

Layered Operating System

UNIX

n  UNIX – limited by hardware functionality,
the original UNIX operating system had
limited structuring. The UNIX OS consists
of two separable parts
n  Systems programs
n  The kernel

n  Consists of everything below the system-call
interface and above the physical hardware

n  Provides the file system, CPU scheduling, memory
management, and other operating-system
functions; a large number of functions for one level

UNIX System Structure

Microkernel System Structure

n  Moves as much from the kernel into “user” space
n  Communication takes place between user modules using

message passing
n  Benefits:

n  Easier to extend a microkernel
n  Easier to port the operating system to new architectures
n  More reliable (less code is running in kernel mode)
n  More secure

n  Detriments:
n  Performance overhead of user space to kernel space communication

Modules
n  Most modern operating systems

implement kernel modules
n  Uses object-oriented approach
n  Each core component is separate
n  Each talks to the others over known

interfaces
n  Each is loadable as needed within the kernel

n  Overall, similar to layers but with more
flexible

Solaris Modular Approach

Virtual Machines
n  A virtual machine takes the layered approach

to its logical conclusion. It treats hardware
and the operating system kernel as though
they were all hardware

n  A virtual machine provides an interface
identical to the underlying bare hardware

n  The operating system creates the illusion of
multiple processes, each executing on its own
processor with its own (virtual) memory

Virtual Machines (Cont.)

n  The resources of the physical computer
are shared to create the virtual machines
n  CPU scheduling can create the appearance

that users have their own processor
n  Spooling and a file system can provide virtual

card readers and virtual line printers
n  A normal user time-sharing terminal serves as

the virtual machine operator’s console

Virtual Machines (Cont.)

 (a) Nonvirtual machine (b) virtual machine

Non-
virtual

Machine

Virtual Machine

Virtual Machines (Cont.)

n  The virtual-machine concept provides complete protection
of system resources since each virtual machine is isolated
from all other virtual machines. This isolation, however,
permits no direct sharing of resources.

n  A virtual-machine system is a perfect vehicle for
operating-systems research and development. System
development is done on the virtual machine, instead of on
a physical machine and so does not disrupt normal system
operation.

n  The virtual machine concept is difficult to implement due
to the effort required to provide an exact duplicate to the
underlying machine

VMware Architecture

The Java Virtual Machine

Operating-System Operations
n  Interrupt driven by hardware
n  Software error or request creates exception or trap

n  Division by zero, request for operating system service

n  Other process problems include infinite loop, processes
modifying each other or the operating system

n  Dual-mode operation allows OS to protect itself and other
system components
n  User mode and kernel mode
n  Mode bit provided by hardware

n  Provides ability to distinguish when system is running user code
or kernel code

n  Some instructions designated as privileged, only executable in
kernel mode

n  System call changes mode to kernel, return from call resets it to
user

Transition from User to Kernel Mode

n  Timer to prevent infinite loop / process hogging resources
n  Set interrupt after specific period
n  Operating system decrements counter
n  When counter zero generate an interrupt
n  Set up before scheduling process to regain control or terminate program that exceeds

allotted time

Process Management Activities
The operating system is responsible for the

following activities in connection with process
management:

n  Creating and deleting both user and system
processes

n  Suspending and resuming processes
n  Providing mechanisms for process

synchronization
n  Providing mechanisms for process communication
n  Providing mechanisms for deadlock handling

Memory Management

n  All data in memory before and after processing
n  All instructions in memory in order to execute
n  Memory management determines what is in

memory when
n  Optimizing CPU utilization and computer response to

users

n  Memory management activities
n  Keeping track of which parts of memory are currently

being used and by whom
n  Deciding which processes (or parts thereof) and data to

move into and out of memory
n  Allocating and deallocating memory space as needed

Storage Management
n  OS provides uniform, logical view of information storage

n  Abstracts physical properties to logical storage unit - file
n  Each medium is controlled by device (i.e., disk drive, tape drive)

n  Varying properties include access speed, capacity, data-transfer
rate, access method (sequential or random)

n  File-System management
n  Files usually organized into directories
n  Access control on most systems to determine who can access what
n  OS activities include

n  Creating and deleting files and directories
n  Primitives to manipulate files and dirs
n  Mapping files onto secondary storage
n  Backup files onto stable (non-volatile) storage media

Mass-Storage Management
n  Usually disks used to store data that does not fit in main memory or data

that must be kept for a “long” period of time.
n  Proper management is of central importance
n  Entire speed of computer operation hinges on disk subsystem and its

algorithms
n  OS activities

n  Free-space management
n  Storage allocation
n  Disk scheduling

n  Some storage need not be fast
n  Tertiary storage includes optical storage, magnetic tape
n  Still must be managed
n  Varies between WORM (write-once, read-many-times) and RW (read-

write)

I/O Subsystem
n  One purpose of OS is to hide peculiarities of

hardware devices from the user
n  I/O subsystem responsible for

n  Memory management of I/O including buffering
(storing data temporarily while it is being transferred),
caching (storing parts of data in faster storage for
performance), spooling (the overlapping of output of
one job with input of other jobs)

n  General device-driver interface
n  Drivers for specific hardware devices

Protection and Security
n  Protection – any mechanism for controlling access of processes or

users to resources defined by the OS
n  Security – defense of the system against internal and external attacks

n  Huge range, including denial-of-service, worms, viruses, identity theft, theft
of service

n  Systems generally first distinguish among users, to determine who can
do what
n  User identities (user IDs, security IDs) include name and associated

number, one per user
n  User ID then associated with all files, processes of that user to determine

access control
n  Group identifier (group ID) allows set of users to be defined and controls

managed, then also associated with each process, file
n  Privilege escalation allows user to change to effective ID with more rights

ECE 677, DOS Lectures

Distributed Operating Systems

1.  Design Issues
 - structure, IPC, Resource Management,
Security, Naming,

3. Case Studies
n  LOCUS, Amoeba, V System, Mach, x-Kernel
n  Advanced Systems: Somberero, 2K, et al.

47

Types of Distributed OSs

System Description Main Goal

DOS Tightly-coupled operating system for multi-
processors and homogeneous multicomputers

Hide and manage
hardware resources

NOS Loosely-coupled operating system for
heterogeneous multicomputers (LAN and WAN)

Offer local services to
remote clients

Middleware Additional layer atop of NOS implementing general-
purpose services

Provide distribution
transparency

48

Multiprocessor Operating Systems

n  Like a uniprocessor operating system
n  Manages multiple CPUs transparently to

the user
n  Each processor has its own hardware

cache
n  Maintain consistency of cached data

49

Multicomputer Operating Systems

1.14

50

Network Operating System

1-19

51

Network Operating System
n  Employs a client-server model

n  Minimal OS kernel
n  Additional functionality as user processes

52

Middleware-based Systems
n  General structure of a distributed system as

middleware.

1-22

53

Comparison between Systems

Item
Distributed OS Network

OS
Middleware-
based OS Multiproc. Multicomp.

Degree of transparency Very High High Low High

Same OS on all nodes Yes Yes No No

Number of copies of OS 1 N N N

Basis for communication Shared
memory Messages Files Model specific

Resource management Global,
central

Global,
distributed Per node Per node

Scalability No Moderately Yes Varies

Openness Closed Closed Open Open

Distributed Operating Systems Implementations

1) Monlithic Kernel : All operating system services
implemented in one big monolithic kernel

2) Micro Kernel : The operating system services are
structured as a collection of independent processes

3) Object Oriented Operating System :
 - Previous techniques realize OS services as a set
of processes
 - Here the OS services are implemented as objects
 (data structures and operations)

Distributed Operating System Implementation

1. Monolithic Approach
n  UNIX, Sprite
n  Every system functions included in the DOS

n  It is very complex and large (1Mbytes)
n  Intractable
n  Efficient process execution

Monolithic Kernel

S4

S1 S2 S3

... ... Server
Dynamically loaded server program

Kernel code and data

Microkernel
n  Only the basic services: process management, memory

management, interprocess communication
n  Other services are provided at user levels and dynamically

loaded to relevant computers
n  It is open and modular architecture
n  Small kernel makes it easy to debug and be more efficient

S1

Microkernel

Server

Dynamically loaded server program

Kernel code and data

S4 S2 S3

57

Microkernel System Structure
n  Moves as much from the kernel into “user”

space.
n  Communication takes place between user

modules using message passing.
n  Benefits:

 - easier to extend a microkernel
 - easier to port the operating system to new
architectures
 - more reliable (less code is running in kernel
mode)
 - more secure

58

DoS Design Issues
n  Communication Primitives

n  Message Passing, RPC, DSM, etc
n  Support for error handling in case of

communication failure

n  Naming
n  Name-location mapping can be centralized,

partitioned or replicated
n  Name space can be hierarchical or flat
n  Typically, there is a name server to provide the

mapping.

59

Design Issues Contd...
n  Resource management

n  It is impossible to gather information about
utilization or availability of resources coherently.

n  Hence these have to be calculated approximately
using heuristic methods.

n  Processor allocation
n  Load balancing
n  Hierarchical organization of processors.
n  If a processor can’t handle a request, ask the

parent for help.
n  Issues: Crashing of a higher level processor will

result in isolation of processors attached to it.

60

Design Issues (contd.)

n  Process scheduling
n  Communication dependency has to be considered.

n  Fault tolerance
n  The design should consider distribution of control

and data.

n  Services provided
n  Typical services include name, directory, file, time,

etc.

Design Issues: Inter-process Communications

n  Inter-Process Communication Types:
n  Message Passing

n  Remote Procedure Calls
n  Shared Memory

62

Inter-Process Communication: Message
Passing

n  There are three fundamental design
issues that must be addressed in
designing an IPC scheme
n  blocking or non-blocking,
n  reliable or unreliable,
n  buffered or un-buffered primitives

63

Inter-Process Communication: Message Passing

n  minimize the number of communication primitives
n  adopt request/response communication model

n  only three communication primitives (e.g., Ameoba).
n  The first primitive is used to send a request to a server

and wait for the reply from the server
n  The second primitive is to receive the Client requests
n  The third primitive is to send the server reply message

to the client after the request has been processed.

64

Inter-Process Communication: Remote
Procedure Calls

n  It has been widely accepted and used.
n  using procedures to transfer control from one procedure to another is simple

and well understood in high-level language programs running on a single
computer.

n  This mechanism has been extended to distributed operating systems
n  RPC Design Issues

n  how to pass parameters from the calling procedure to the called
procedure.

n  We could pass parameters by using either value or reference techniques.
n  Passing parameters by value is easy
n  passing parameters by reference is more complicated because we do

need to have a unique and system-wide pointers

n  Passing parameters get even more complicated if different types of
computers are used

65

Naming Concepts
n  Name

n  What you call something

n  Address
n  Where it is located

n  Route
n  How one gets to it

  But it is not that clear anymore, it depends on perspective.
  A name from one perspective may be an address
  from another Perspective means layer of abstraction

What is http://www.ece.arizona.edu/~hpdc ?

66

What are the things we name
n  Users

n  To direct, and to identify

n  Hosts (computers)
n  High level and low level

n  Services
n  Service and instance

n  Files and other “objects”
n  Content and repository

n  Groups
n  Of any of the above

67

How we name things
n  Host-Based Naming

n  Host-name is required part of object name

n  Global Naming
n  Must look-up name in global database to find address
n  Name transparency

n  User/Object Centered Naming
n  Namespace is centered around user or object

n  Attribute-Based Naming
n  Object identified by unique characteristics
n  Related to resource discovery / search / indexes

68

Naming Service
n  It is a mapping between two

domains
n  in a centralized system, we have one directory to

perform the mapping

n  Naming Servers
n  Centralized Name Server:

n  In this approach, we have a single name server that accepts
names in one domain and simply maps them to another name
normally understood by the system

n  (e.g., In UNIX environment, this represents the mapping of an
ASCII file name into its I-node number).

n  A server or a process needs first to register its name in the
database to publicly advertise the availability of the service
offered by that server or process.

69

Naming Service- Cont.
n  Hierarchical Name Server:

n  divide the system into several logical domains
n  each logical domain maintains its own mapping table.
n  similar mapping in telephone network in which a country

code followed by an area code followed by an exchange
code all precede the actual user phone number.

n  an object can be located or found based on which domain
or subdomain it resides in

n  the name server of its domain or subdomain will perform
the mapping and locate the requested object or process.

n  Use a set of pairs that will point to either the physical
location of the object or the next name that might contain
the physical location of the object.

70

Naming Service- Cont.
n  Distributed Name Server:

n  allow each computer or resource to implement the
name service function.

n  each machine on the network will be responsible for
managing its own names.

n  Whenever a given object is to be found, the machine
requesting the name will broadcast the name on the
network, if its not known in its mapping table.

n  Each machine on the network will then search its local
map to determine if there is a match.

n  If a match exists, then a reply is sent to the
requesting machine.

n  If no match is found, then no reply is made.

71

Resource/Process Management

n  Resource management is concerned with making both local and
remote resources available to a user in an efficient and transparent
manner
n  the location of the resources is hidden from the user
n  remote and local resources are accessed in the same manner.

n  In a centralized computing system, the scheduler has full knowledge
of the processes running in the system

n  In a distributed system, there is no centralized table and even if it
exists, it is very difficult to keep that database up-to-date.

n  Lack of accurate global system status and load, make process
scheduling and resource management is a challenging task
n  Allocate processors to processes
n  Schedule/balance loads
n  Migrate processes

72

Resource Management- Processor Allocation
n  In the case of a processor pool model,

n  When processes are submitted there is some knowledge of the process
type;

n  whether CPU intensive, I/O intensive, its memory or resource requirements,
etc.

n  The resource manager then determines the number of processors to be
allocated to the process

n  one can organize the system processors into a logical hierarchy: master
and workers
n  A single master may oversee multiple workers and keep track of their status
n  when a job is submitted, the master decides how the process may be split

up among the workers.
n  When several masters are used, one can designate a node or a committee

of nodes the responsibility of managing all the masters in the system
n  When a manager fails, one of the worker processors should be designated

to carry the responsibilities of the failed manager.

73

Resource Management - Scheduling

n  Scheduling is to maximize the utilization of the
system resources and improves performance
n  Schedule to improve reliability/availability
n  Schedule to improve security, etc.

n  Scheduling is even more important in distributed
applications

n  the schedu le r needs to a l l oca te the
communicating tasks simultaneously on different
p rocessors in o rder to min im ize the
communication delays

74

Process Scheduling
Machine

 Processor 1

Processor 2

 Time

1

2

T

T1

X

2T

X

T2

3T

X

X

4T

T1

T2

5T

X

X

75

Resource Management - Load
balancing and scheduling

n  It aims at improving the performance by
moving data, computation, or processes

n  Load balancing has a more stringent
requirement than scheduling

n  Load balancing/scheduling techniques can
be achieved by either migrating data,
computation or processes.

n  Process migration incurs high overhead

76

File Service
n  There are three file system functions:

n  disk service, flat file service, and directory
service.

n  The file system characteristics depend on how
these functions are implemented
n  One extreme approach is to implement all the functions

as one program running on one computer.
n  The other extreme is to implement each function

independently so we can easily support different types
of disk and file systems.

n  this approach is inefficient because these modules
will communicate with each other using the inter-
process communication services.

77

File Service- Cont.
n  A common file system is typically provided by file servers

n  lower system costs, facilitate the sharing of data among
users, simplify the management and administration of the
file system

n  file service can be distributed across several servers to
provide a distributed file service (DFS)
n  DFS should look to its users as a conventional file system
n  The multiplicity of data and the geographic dispersion of

data should be transparent to the users.
n  DFS introduces new problems that the distributed

operating system must address such as concurrent
access, transparency and availability of the file service

78

Fault Tolerance
n  Distributed systems are potentially more fault tolerant

than a non-distributed system

n  Fault tolerance enables a computing system to continue
its operations successfully in-spite some failures in system
components (hardware or software resources)

n  Fault intolerance system crashes when some failure
occurs

n  There are two approaches to achieve fault tolerance:

n  Redundancy

n  Atomic transaction

79

Fault Tolerance - Redundancy
n  Redundancy is the most widely used technique

n  detecting faults once they occur,
n  locating and isolating the faulty components, and then recover

from the fault(s)
n  fault detection and recovery are the most important and difficult

to achieve
n  Types of failures which may occur in the system are:

n  hardware errors are of a Boolean nature
n  Intermittent faults
n  Software errors can be broken down into

n  Specification errors
n  Programming errors refer to the case where the program

fails its specification

n  Byzantine Faults – malicious faults

80

Fault Tolerance - Atomic Transactions

n  They refer to operations with a guarantee that
n  operations will either be performed successfully until

completion or
n  non of them is executed and the system is restored to its

initial state.

n  To achieve atomic operations, the system
relies
n  careful read and write operations,
n  stable storage, and
n  stable processor

81

Fault Tolerance - Atomic Transactions
n  Careful Disk Operations:

n  CAREFUL_WRITE operation
n  the data block is written to the disk
n  a READ service is called to immediately read back the written

block to make sure it was not written to a bad spot on the disk.
n  If found persistent discrepancy after predetermined number of

times, the disk spot is declared bad.
n  Even, after writing correctly to the disk, the written spot can go

bad.

n  This is normally detected by checking the parity
check field of any read block during the
CAREFUL_READ operation.

82

Fault Tolerance - Atomic Transactions
n  Stable Storage:

n  attempt to mirror all data on more than one disk
n  minimize the amount of data lost in the event of a disk failure.

n  Writing to the stable storage abstraction
n  first attempts a CAREFUL_WRITE to the primary disk
n  If the operation completes without error, a CAREFUL_WRITE is

attempted on the secondary disk
n  If, on corresponding disk blocks the blocks are the same and GOOD,

nothing further needs to be done with these blocks.
n  On the other hand, if one is BAD and the other is GOOD,
n  the BAD block is replaced by the data from the GOOD block on the

other disk.
n  If the disk blocks are both GOOD but the data is not identical, the

data from the primary disk is written over the data from the
secondary disk.

83

Fault Tolerance - Atomic Transactions
n  Stable Processor:

n  processes may checkpoint themselves to stable storage periodically
n  in the event of the processor running the process crashes,
n  the process may restore its last ckeckpointed state by reading the stable

storage

n  An atomic transaction can be implemented as:
n  When a process wishes to make changes to a shared database, the

changes are recorded in stable storage as an intention list.
n  When all of the changes have been made, the process issues a commit

request.
n  The intention list is then written to memory.
n  By using this method, all the intents of process are in stable storage and

at any time during disk update,
n  a crash can be recovered from by simply examining the

contents of any outstanding intention list in memory each time
a processor is brought up.

84

Security and Protection
n  Security and protection are necessary to avoid

unintentional or malicious attempts to harm the
integrity of the distributed system.

n  Security is implemented using techniques that
are based on the following principles:
n  What you have
n  What you know

n  What you are

85

Security Goals
n  Confidentiality

n  No one not authorize can see or access data
n  Authentication

n  Determining identity of principal

n  Integrity
n  Authenticity of document
n  That it hasn’t changes

n  Availability
n  Whenever you need to access your data, you can
n  DoS attacks affect availability of services

86

Security Issues:
n  Two security issues must be dealt with:

n  authentication and authorization.
n  Authentication: Authentication is making sure that an entity is what

it claims to be.
n  Password protection is sufficient in general systems
n  high security systems might resort to physical identification

or voice identification, cross examination, or user profiling to
authenticate a user.

n  Authorization: granting a process to do something based on
the privileges it has.

n  Privileges of a user over an entity may be expressed either as
n  Access Control Lists (ACLs)

n  Capabilities.

87

Security Policy

n Access Matrix

n  implemented as:
n  Capabilities or
n  Access Control list

Subject OBJ1 OBJ2
bcn RW R
gost-group RW -
obraczka R RW
tyao R R
Csci555 R -

88

Access Control Lists

n Advantages
n  Easy to see who has access
n  Easy to change/revoke access

n Disadvantages
n  Time consuming to check access

n Extensions to ease management
n  Groups
n  EACLs

Extended Access Control Lists
n  Conditional authorization

n  Implemented as restrictions on ACL entries and
embedded as restrictions in authentication and
authorization credentials
Principal Rights Conditions
bcn RW HW-Authentication

Retain Old Items
gost-group RW TIME: 9AM-5PM

authorization
server

R Delegated-Access

* R Load Limit 8
Use: Non-Commercial

* R Payment: $Price

90

Capabilities
n  Advantages

n  Easy and efficient to check access
n  Easily propagated

n  Disadvantages
n  Hard to protect capabilities
n  Hard to revoke

n  Hybrid approach
n  EACL’s/proxies

91

Protecting capabilities
n  Stored in Hidden Place

n  Only protected calls manipulate

n  Limitations ?
n  Works in centralized systems

n  Distributed Systems
n  Tokens with random or special coding
n  Possibly protect through encryption

Distributed Operating Systems: Case
Studies
1. Design Issues
 - Network Operating System v.s. Distributed Operating
Systems
 - Design Issues

2. Case Studies
n  LOCUS
n  Amoeba
n  V System
n  Mach
n  x-Kernel

Locus : Main Goal & Features
n  Main Goal

- Distributed and reliable Unix - like operating system
- High degree of location transparency, concurrency,

replication and failure

n  Features
- Automatic replication of data under user control
- User might be needed to produce a consist system

after a network partitioning caused by computer
or network failures

Locus : Descriptions
n  It is compatible with Unix operating system (BSD

and system V)
n  It support DEC Vax/750, DEC PDP 11/45 and IBM

PC connected by Ethernet or token ring
n  Full Unix semantics and emulated Single tree

structure
n  File replication is made using multiple physical

containers for each logical file group
n  Atomic commit using shadow page used for

redundancy management

95

Logical File Access

Response(4)

Open(1)

US CSS

SS

Amoeba : Main Goal & Advantage
n Main Goal

- Develop a capability - based, object - based distributed
operation system

- make a large collection of machines (larger than the number
of users) behave as a centralized time - sharing system

n Advantage
- Transparency and high performance
- Main disadvantages are inability to run existing binary Unix

programs and the lack of virtual memory

Amoeba : Description
n  It is a microkernel based operating system.
n  The microkernel runs on each machine and handles communication, I/

O, low-level memory, and process management
n  Other O.S. services are provided using servers running in user mode
n  Most computing is done on the processor pool :

 a collection of CPUs that are dynamically allocated to jobs and then
released

n  Specialized servers (File servers and directory servers) handle certain
system functions

n  Each object has a global unique name, expressed through its capability
n  The port number is generated randomly using 48 bits and stored in

directories managed by a directory service
n  To locate the service corresponding to a port, the client’s kernel

broadcasts a “local” packet

Amoeba : Description (cont)

n  Bullet server supports immutable files that are stored
contiguously on the disk. It achieves high throughput
(800 Kbytes/sec)

n  Directory server maps ASCI strings onto capabilities
n  Run server handles requests to run a process and

assigns it to the pool processor with the lightest load
n  Object server handles replication in order to support

fault tolerance. Processes that need fault tolerance need
to register that request with the boot server

n  Other servers include TCP/IP server, X-window server,
I/O server, etc

Amoeba : Hardware Architecture

It has four components: workstations, processor pool,
specialized servers and gateways

n  Processor pool provides most of the computing power
’  Processors can be allocated dynamically to user applications
’  the number of processors exceeds the number of users by an

order of magnitude

n  Gateways are used to access other Amoeba systems over
a wide area networks

n  Centralizing the computing power allows incremental
growth, fault tolerance and ability to obtain a large
amount of computing power temporarily

Amoeba : Hardware Architecture

supercomputer

multicomputer

.

.

.

processor array

processor pool

 servers

LAN

workstations
terminals

:

...
. . .

WAN

gateway

. . .

Amoeba : Software Architecture
n  Object-based system using clients and servers
n  Each object is identified and protected by a capability
n  It identifies the set of operations that the holder can perform on

the object
n  Guessing an object capability is infeasible because of using

cryptographic protection
n  Capability are kept secret by embedding them in a huge address

space
n  Given a capability, the system can easily find a server process that

manages the corresponding object
n  Kernel manages memory, supports processes with multiple threads

and handle interprocess communication
n  All other services are provided by user-level processes

Amoeba : Software Architecture

Structure of a capability.
•  The service port identifies the service that manages the

object.
•  The object number specifies the object.
•  The rights field determines which operations are

permitted.
•  The check field cryptographic protects from users

tampering with the other field

Service Port Object Number Right field Check field

4 8 2 4 8 4 8 bits

103

Process capability
Host descriptor

Process capability
Handler capability

Number of segments

•
•

Number of threads

•
•

Amoeba process descriptor

Segment descriptor

Thread descriptor

ECE 677, DOS
Lectures

Amoeba : Communications
n  It is based on a client thread (light-weight

processes) performing operations on objects
n  A client sends a request message to a server that

manages the object
n  A server thread, accepts the message, carries

out the request, and sends the reply
n  Multiple server processes could manage a

collection of objects
n  increase performance and fault tolerance

Amoeba: Remote Procedure Call
n  The kernel provides three basic operations:
n  do_operation : used by client to get work done,

send a message to server and block until reply
comes back

n  get_request : used by servers to announce their
willingness to accept messages addressed to
specific ports

n  send_reply: sends results to clients
n  A more user-oriented interface has been built on

top of these three primitives

Amoeba: Remote Procedure Call

n The Amoeba Interface language
compiler generates code to
marshal or un-marshal the
parameters into and out of
message buffers and then call the
transport mechanism

Amoeba : Locating Objects

n do_operation : If the kernel knows
the server address, it can locate
the object.

n  If the kernel doesn't know the
server address, it uses broadcast
to get the address

n  server perform : get_request

Amoeba : Secure Communications

n  Knowing the port is taken by the
system as evidence that the sender
has a right to communicate with the
service

n  Amoeba has two level of protection:
n  ports for protecting access to servers
n  capabilities for protecting access to individual objects

n  How do we secure communications?
n  Introduce a one-way filter that can be implemented in

hardware or software

Amoeba : Secure Communications

Client

Intruder

Server

F

F

F

get_request(F(p))

do_operation(P)
Get
addr(G)
secret P = get_request(G)

P = F (G) P

Client, server, intruders and F-boxes

Amoeba : File Service
n  Bullet Service: it stores all files contiguously both on disk

and in the bullet server's memory
n  No disk access is needed to fetch the i-node and one disk

access is needed to access the whole file
n  Supports three operations: read file, create file, and delete

file => files are immutable
n  Several advantages

n  fast retrieval
n  simplify administration
n  remove inconsistency patterns

n  File can be transferred in one (single) RPC if less than 30K

Amoeba : Directory Service

n Bullet server has no high level
memory services

n  to access a file, a person must
provide the relevant capability

n directory service maps an ASCII
string into a capability

112

Object Name Capability Owner Group Other
cap1 11111 11000 10000

games_dir cap2 11111 10000 10000
paper.1 cap3 11111 00000 00000
prog.c cap4 11111 11100 10000

A directory with three user classes

Mach Distributed Operating System
n  An earlier roots go back to Rochester Intelligent gateway

(RIG) in 1975 (a message passing OS)
n  second generation was in 1979
n  Mach third generation was in 1984

- should be compatible with Unix (1986)
n  Open Software Foundation (OSF) choose MACH 2.5 to be

its first version of OSF/1.
- a base to build other OS
- support large sparse address space
- transparent access to network resources
- exploit parallelism in both system and applications
- portable to a larger collection of machines

Mach : Main Goal & Advantages

n Main Goal
- Integrate distributed and multiprocessor functionality
- Full binary compatibility with Unix BSD

n Advantages
- Good environment for distributed and parallel

applications because of efficient support to :
 * shared memory
 * message passing for uniprocessor and
multiprocessors
 * smooth transition from Unix environment to MACH

115

System Model
n  Mach is a micro-kernel based operating system.
n  It has been designed to provide a base for building new operating

systems and emulating existing ones (e.g., UNIX, MS-Windows, etc.)
n  Mach is based on the concepts of processes, threads, ports, and

messages.
n  The MACH kernel provides the basic critical resource management tasks:

n  memory management,
n  scheduling,
n  device management,
n  inter-process communication.

n  The emulated operating systems (e.g., UNIX systems) run
on top of the kernel as servers or applications that provide
users or applications the operating system environment in a
transparent manner.

Mach (cont)

User processes

4.3 BSD
emulator

System V
emulator

HP/UX
emulator

other
emulator

Microkernel

Software
emulator

layer

User space

Kernel space

The abstract model for Unix emulation using Mach

117

Mach - Resource Management
n  Process Management: Mach split the traditional UNIX abstraction of

a process into a process and threads.
n  A process in Mach consists primarily of an address space and a

collection of threads that execute in that address space
n  In Mach, processes are passive and are used for collecting all the

resources related to a group of cooperating threads into convenient
containers.

n  The active entities in Mach are the threads that execute instructions
and manipulate their registers and address spaces.

n  Each thread belongs to exactly one process. A process cannot do
anything unless it has one or more threads.

n  A thread contains the processor state, and the contents of a machine's
registers.

n  All threads within a process share the virtual memory address space
and communications privileges associated with their process.

118

Mach - Process Management
n  The UNIX abstraction of a process is simulated in Mach by

combining a process and a single thread.
n  Mach allows multiprocessor threads to execute in parallel on

separate processors.
n  Mach threads are managed by the kernel, that is, they are

heavyweight threads rather than lightweight threads (pure
user space threads).

n  Thread creation and destruction are performed by the
kernel and involve updating kernel data structures.

n  The primary data structure used by the Mach scheduler is
the run queue

n  A hint is maintained to indicate the probable location of the
highest priority thread. Each run queue also contains a
mutual exclusion lock and a count of threads currently
enqueued.

Mach : Process
Management

Process
port

Bootsttrap
port

Exception
port

Registered
ports

Kernel

Other process properties
Suspend counter
Scheduling parameters
Emulation address
Statistics

Thread

Address
space

Process

Selected process management calls in Mach :
Create, Terminate, Suspend, Resume, Priority, Assign, Info, Threads.

A Mach process

120

Mach - Processor Allocation
n  processor allocation approach must be flexible

and portable
n  1) allocating processors to applications should support

different languages with different programming
modes;

n  2) allocation approach should be easily portable to
different parallel and distributed architectures;

n  3) it should accommodate different allocation policies;
n  4) it should offer applications complete control over

which threads execute on which processors, but it
should not force implementation on applications not
wanting this degree of control.

ECE 677, DOS
Lectures 121

Mach - Processor Allocation
n  Responsibility for the allocation and use of dedicated processors is

divided among

n  the application, server, and kernel.
n  The application controls the assignment of processes and threads to

processor sets.
n  The server controls the assignment of processors to processor

sets.

n  The kernel does whatever the application and server asks it to
do.

n  In this scheme, the physical processors allocated to the processor sets
of an application can be chosen to match the application requirements.

n  Assigning threads to processor sets gives the application complete
control over which threads run on which processors.

n  isolating scheduling policy in a server, simplifies changes for different
hardware architectures and site-specific usage policies.

Mach : Memory Management
n  It has three parts:

- pmap module: sets the MMU registers and hardware page
tables

- machine-independent kernel code: to process page faults,
managing address maps, and replacing pages

- external manager (user space): management of backup
store, which pages in main memory, where they are kept
on disks

n  Distributed Memory in Mach
- single, linear virtual address space

- shared pages are managed by one or more special memory managers
- one Distributed Shared Memory (DSM) server

- DSM handles all references to shared pages
- readable pages are replicated at all nodes
- writable pages will have only one copy

Communication in Mach

n  It can handle asynchronous message
passing, RPC, byte streams, and other
forms

n  The basis of all communications is a
protected mailbox called ``port''

Selected port management calls in Mach :
Allocate, Destroy, Deallocate, Extract_right,
Insert_right, Move_member, Set_limit

MACH : Descriptions (cont)
n  Every access to a port is protected by the use of capabilities
n  Network servers provide all comm. over the network. Each

host will have one network server
n  Each network server maintains a mapping between network

ports and corresponding local ports
n  MACH provides an interface specification language (MIG) to

specify interfaces between clients and servers and then
generate remote procedure call stubs

n  It is possible to share memory between multiple threads
(the entities of control) and tasks (the entities of resource
allocation) in a highly machine independent manner

MACH : Descriptions
n  MACH runs on many platforms
n  Interprocess Communication (IPC) : It uses ports as an

abstraction to which messages can be sent asynchronously

A B

Port

Sending
thread

Receiving
thread

Kernel SEND RECEIVE

The Network Management Server
n  Communication over the network is

handled by net. message servers
(NMS)

n  NMS is a multithread process that
performs a variety of functions:
interfacing with local threads, forward
message over network, translating data
types, network-wide name lookup
service and authentication services

The Network Management Server

Table mapping
between local ports
and network ports

4 216

Machine A

C NMS

1 2

216 7

Machine B

S NMS

4 5

Local network Local network

3

Inter-machine communication in Mach proceeds in five steps

CASE STUDIES:The X-Kernel
Reference: A platform for accessing Internet resources, IEEE

Computer, May 1990

n  An experimental operating system to allow uniform access
to resources throughout a nationwide internet

n  Focus is on wide-area networks rather than LANs
n  a workstation needs to access several different file

systems
n  more protocols lead to more accessible resources

n  X-kernel supports a library of protocols and it accesses
different resources with different protocol combinations

n  On top of X-kernel, the user-level systems provides an
integrated and uniform interface to resources

129

X-Kernel - Goals and Objectives
n  X-Kernel can be viewed as a toolkit that

provides all the tools and building blocks

n  to build and experiment with distributed
operating systems configured to meet certain
class of applications.

n  The main advantages of x-Kernel are
n  x-Kernel configurability
n  its ability to provide an efficient environment to

experiment with new operating systems as well
as different communications protocols.

130

X - Kernel - System Model
n  Kernel is a micro-kernel-based operating system

configurable to support experimentation in inter-process
communication and distributed programming

n  The motivation of this approach is two fold:
n  1) no communication paradigm is appropriate for all

applications; and
n  2) use the X-Kernel framework to obtain realistic

performance measures.

n  The x-Kernel supports
n  memory management
n  lightweight processes

n  development of different communications protocols.

131

X - Kernel - Resource Management

n  An important aspect of any distributed
system involves its ability to pass
control and data efficiently between
the kernel and user programs.

n  In x-Kernel, the transfer between user
and kernel space has been made
efficient by having the kernel execute
in the same address space of the user
data

The X-Kernel : Process and Memory
n  an important aspect of a workstation OS

involves its ability to pass control and data
efficiently between the kernel and user
programs
n  user data is accessible because kernel process

executes in same address space

n  kernel process -> user process
n  sets up user stack
n  pushes arguments
n  use user-stack
n  access only user data

n  kernel -> user (245 usec), user -> kernel 20 usec on
SUN 3/75

The X-Kernel : Process and Memory

Process stack

Procsee stack

Kernel code /
data area

User code /
data area

(Private)

(Shared)

(Shared)

USP

KSP

User stack

Kernel stack

Virtual Address Space

134

X - Kernel - Inter-Process Communication
n  There are three communication objects:

n  protocols, sessions, and messages.
n  A different protocol object is used for each protocol type
n  The session object is the protocol's objects interpreter

and it contains the data that represents the protocol
state.

n  The message objects are transmitted by the protocol
and session objects.

n  To communicate between processes in different address
spaces or different machines the protocol objects are
used and messages are sent.

n  Processes in the same address space can synchronize
using kernel semaphores.

135

X - Kernel - Inter-Process Communiation
n  There are several routines which are used to provide the

wide variety of protocols:.
n  buffer manager, map manager, and event manager,

n  The buffer manager routines uses the heap to allocate message buffers
n  The map manager maps one identifier from a message header to

capabilities used by the kernel objects.
n  The event manager allows a protocol to provide a procedure call which

is a timed event
n  A protocol object can create a session object and demultiplex messages

before sent to session object.
n  There are three operations that the protocol object uses which are

n  open, open_enable, and open_done

The X-Kernel : Communication Management
n  The open creates a session object caused by a user process,
n  the open_enable and open_done are invoked by a message from the

network.
n  The protocol object is also a demux function operation and can send

any message from the network to one of the session created by the
protocol object

n  Session have two operations push and pop.
n  Push is used by a higher session to send a message to a lower

session.
n  The pop operation is used by the demux operation of a protocol

object to send a message to its session.
n  As a message is passed between sessions, information is added to

the header and sometimes the message can be split up into several
messages.

n  If a message goes from a device to the user level, it can be put into a
larger message.

The X-Kernel : Communication Management

TCP

Open

TCP

Demux

Push

Pop

Push

Pop

Push

Pop

(a)

(b)
Protocol (a) and Session (b) Objects

The X-Kernel : Communication Management

n  In X-kernel, each protocol is encapsulated into a single protocol object
and a collection of session objects

n  TCP protocol is directly accessible by user programs.
n  For a user to access one protocol, it makes itself a protocol and then

access that protocol
n  In X -kernel, the responsibility for processing the packet passes from

one protocol to another by having the first protocol invoke an
operation exported by the second.

 - no need to process switch between protocols
n  X-kernel has a library of support routines that provides efficient

solutions to programming tasks common to all protocols (message
manager and map manager and event manager).

n  Massage manger: add headers, strip headers, fragment, etc.
n  Map manager: to switch between lower level protocols to appropriate session

objects
n  Event manger: provides an alarm (clock) for protocols

The X-Kernel : Communication Management

ETH

Xserver

NFS

TFTP DNS RP
C

UDP TCP Psync

IP

ARP

Keybrd Mouse Protocol Suite

140

X - Kernel File System
n  The x-Kernel file system allows its users to

access any x-Kernel resource regardless of the
user location.

n  I t p rov ides a un i fo rm in te r face by
implementing a logical file system that can
contain several different physical file systems.

n  the logical file system concept allows the file
system to be tailored to user`s requirements
instead of being tied to a machine architecture.

The X-Kernel : Logical File System

file protocol confguration

LFS

UFA PNS

NFS AFS FTP

The X-Kernel : Logical File System

n  It is defined by a per user-basis and it behaves as Unix file
system

n  Private Name Space (PNS) protocol implements the
directory functions

n  Uniform File Access (UFA) protocol implements the storage
function

private file hierarchy

 1

 proj1 proj2 .twmrc

src bin doc src paper

 journal conf

 original

The X-Kernel : Performance
n  X-kernel supports efficient implementation of a wide variety

of protocols
n  all times are user-to-user except for Sprite RPC (kernel to

kernel)
n  Unix protocol performance is limited by socket abstraction

Latency of various protocol

Protocol X-kernel Other System
 (msec) (msec)

UDP 2.0 5.4 (Unix)
 7.5 (Sprite)

TCP 3.3 6.1 (Unix)
 11.0 Mach

Sun RPC 4.0 9.2 (Unix)
Spite RPC 1.7 2.6 (Sprite)

DISTRIBUTED OPERATING SYSTEM
FEATURES

 Transparency
Name location access replication concurrency failure
Amoeba * * * *
LOCUS * * * * *
MACH * * *
SPRITE * * *
V * *

 Heterogeneity
Name OS CPU
Amoeba (UNIX) VAXs, SUN 3, (386s, SPARC)
LOCUS UNIX 4.x BSD, V DEC VAX/750, PDP-11/45, IBM PC
MACH UNIX 4.3 BSD VAXs, SUN 3, NS32032, MacII, I386
SPRITE UNIX 4.3 BSD SUNs, DEC&SPARCstations, Sequent Symmetry
V UNIX 4.x BSD SUN 2/3, VAXstationII

DISTRIBUTED OPERATING SYSTEMS FEATURES
 Changes made Communication Connection

Name new new standard specialized shared RPC pipes/
 kernel kernel protocol protocol memory based VC datagram stream

Amoeba * Amoeba *
LOCUS * * *
MACH * * * * *
SPRITE * * *
V *
VMTP * *

 Semantics Naming Security
Name may at most exactly object - hier- en- special capa- mutual

 be once once oriented archical cryption HW bilities auth.

Amoeba * * * * *
LOCUS * * *
MACH * * *
SPRITE * *
V * *

ECE 677, DOS
Lectures

DISTRIBUTED OPERATING SYSTEMS
FEATURES

 Availability Failures object/
Name synchro- nested repli- recovery recovery stable orphan Process

 nization TA TA cation client crash server crash storage detection Mobility

Amoeba * * * *
LOCUS * * * * * * *
MACH + + *
SPRITE * + + *
V * (*) (+) *

147

Advances in D.O.S- Case Studies

n  SOMBRERO
n  2K
n  Network Hardware IS the O.S.
n  Virtually Owned Computers-an

interesting sidenote

148

SOMBRERO

n  Arizona State University, 2006
n  Very Large Single Address Space D.O.S.
n  Systemwide set of virtual addresses
n  Unique address for EVERY datum in

memory
n  64 bit Virtual Address Space
n  Could create a 4GB object once a second

for 136 years!

149

SOMBRERO

n  Single Address Space reduces
(eliminates) overhead
n  Interprocess Communications
n  File Systems
n  Multiple Virtual Address Spaces

n  All activities are distributed and shared
by DEFAULT

150

SOMBRERO (cont’d)

n  Virtual Addresses
n  Permanently and uniquely bound to all

objects
n  Spans all levels of storage
n  Manipulated directly by the CPU- no

address translation
n  All physical storage devices are viewed as

caches for the contents of virtual objects

151

SOMBRERO (cont’d)

n  Transparent Interprocess
Communication

n  Unified Resource Management
n  threads may travel with no changes to

address space

n  Security by restricting OBJECT access

152

2K: A Component-Based Network-Centric
Operating System For the next Millennium

n  University of Illinois: Urbana-Champaign
n  Integrated Environment to support:

n  Dynamic instantiation
n  Heterogeneous computing systems
n  Distributed resource management

153

2K (cont’d)
n  Operates as Configurable Middleware

n  does not rely on TCP/IP
n  dynamically configurable reflective ORB
n  adaptable Microkernel

n  “What you need is what you get” (WYNIWYG)
n  only those objects needed by application are

loaded

n  Object based resource management

154

2K (cont’d)

n  All elements represented as CORBA
objects

n  Each object has a network-wide identity
n  Upon dynamic configuration, objects that

constitute a service are assembled
n  QOS: after negotiating a connection,

applications have access to system’s
dynamic state

155

2K (cont’d)

n  Each Node executes a Local Resource
Manager (LRM)

n  Uses symbolic naming and CORBA
compliant naming

n  Access to objects is restricted to
controlled CORBA interfaces

156

Network Hardware IS the O.S.

n  University of Madrid, 1997
n  Adaptable and Flexible D.O.S.
n  Minimal Adaptable Distributed

Microkernel
n  “...build distributed-microkernel based

Operating Systems instead of
microkernel based distributed systems.”

157

Network Hardware IS the O.S.
n  Entire network is considered exported

and multiplexed hardware instead of
isolated entities

n  OFF: microkernel and its abstractions
are distributed and adaptable
n  “Normal” microkernels multiplex local

resources only
n  OFF microkernels multiplexe local and

REMOTE resources

158

Network Hardware IS the O.S.

n  Only abstraction is the “shuttle”-
program counter and stack pointer

n  shuttle can be migrated between
processors

n  Communication handled by “portals”- a
distributed interrupt line that behaves
like active messaging

159

Network Hardware IS the O.S.

n  Portals do not use buffering
n  User determines Synchronous,

Asynchronous, or RPC communication
n  Not a Single Address Space BUT

physical addresses MAY refer to remote
memory locations

n  Uses a distributed software TLB

160

Virtually Owned Computers
n  University of Texas at Austin
n  Each user owns an imaginary computer-

a virtual computer
n  The virtual computer is only a

“description” and may not correspond
to any real hardware components

n  The virtual computer consists of a CPU
and a scheduling algorithm

161

Virtually Owned Computers

n  Each user is promised a given quality of
service

n  Services received are independent of
the execution location

n  Quality of Service is measured using
response time

