2K: A Distributed Operating System
for Dynamic Heter ogeneous Environments®

Fabio Kon' Roy H. Campbell
M. Dennis Mickunas Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign
{f-kon, rhc, mi ckunas, kl ara} @s. ui uc. edu

Abstract

The first decades of the new millennium will witness an
explosive growth in the number and diversity of networked
devices and portals. We foresee high degrees of mobility,
heterogeneity, and interactions among computing devices
connected to global networks. While previous research
in distributed operating systems solved many problems re-
lated to resource management, they seldom addressed the
problems of heterogeneity and dynamic adaptability. On
the other hand, middleware solutions, like CORBA and
Java/Jini, solve part of the heterogeneity problem by per-
mitting seamless communication among different platforms.
But, they do not address dynamic resource management and
adaptability for applications requiring high-performance
distributed computing.

This paper presents 2K, an integrated operating system
architecture that addresses the problems of resource man-
agement in heterogeneous networks, dynamic adaptability,
and configuration of component-based distributed applica-
tions.

1. Introduction

Modern computing environments are characterized by
a high level of dynamism. Two major kinds of dynamic
changes occur frequently. The first refers to structural
changes such as hardware and software upgrades, protocol
and API updates, and operating system evolution. The sec-
ond refers to dynamic changes in the availability of mem-
ory, CPU, network bandwidth and, in mobile systems, con-
nectivity and location. Drastic changes may occur in a few

*This research is supported by the National Science Foundation, grants
CCR 96-23867, 98-70736, 99-70139, and EIA 99-72884EQ.

TFabio Kon is supported in part by a grant from CAPES-Braxzil, pro-
cess 1405/95-2.

Francisco J. Ballesteros

Systems and Communi cations Group
Rey Juan Carlos University, Madrid
neno@syc. escet. urjc.es

seconds, impacting the performance of user applications
profoundly. Existing operating systems offer very little sup-
port for managing, adapting, and reacting to these changes;
all the work is left to the applications or to users and system
administrators who must take care of them manually. Since
large corporate and academic networks tend to be heteroge-
neous, the configuration work is multiplied by the number
of supported platforms.

This scenario is further aggravated as mobile systems be-
come more common and digital computing becomes ubig-
uitous. Users accessing the global network from anywhere
in the world would like to have prompt access to their com-
puting environment irrespective of their locations.

Thus, we need a flexible and adaptable architecture that
permits the dynamic instantiation of customized user en-
vironments at different locations in the distributed system
with proper care for dependencies. Existing system archi-
tectures, however, do not provide proper management of the
dependencies among system and application components,
which makes it difficult to support automatic configuration
of component-based environments in a reliable way. It is
hard to create robust and efficient systems if the dynamic
dependencies between components are not well understood.
For those reasons, proper dependence management is a ma-
jor requirement for the next generation middleware and op-
erating systems.

Management of dynamism and dependencies is also cru-
cial for computationally intensive distributed applications.
In many cases, the dynamic variations in the environment
are so high that the distribution overhead becomes larger
than the speedup obtained with the additional parallelism.

In this paper, we present an overview of 2K, a novel
network-centric operating system that extends the previous
work on configurable operating systems. It redesigns the
system API to provide an integrated solution to the prob-
lems mentioned above, namely, the existence of an inte-
grated environment that supports dynamic changes, auto-

matic configuration, heterogeneity, and distributed resource
management.

2. Resource Management in Heterogeneous
Environments

The basic task of both centralized and distributed oper-
ating systems is to manage the resources of a machine (or
a collection of machines) and safely export them to their
users. Conventional operating systems, however, are not
able to manage the resources of collections of heteroge-
neous machines.

CORBA and Java/Jini emerge as powerful technologies
for interoperability in heterogeneous environments. But
they both lack the notion of a “user” and do not provide
support for dynamic resource management either in a sin-
gle machine or in a distributed environment.

Our approach combines the benefits of CORBA with
those of distributed operating systems. It provides man-
agement of distributed resources while being able to han-
dle different hardware platforms and different underlying,
single-node operating systems.

The 2K system supports a completely object-oriented
view of the distributed computing environment; distributed
hardware and software resources are encapsulated as
CORBA objects while distributed operating system services
(e.g. file, naming, and execution services) are exported as
CORBA services. Applications run within this relatively
homogeneous environment built on top of highly heteroge-
neous distributed environments.

To achieve optimal application performance in a dy-
namic environment of distributed resources, the middleware
must be configurable and able to adapt to dynamic changes
in resource availability and in the software and hardware in-
frastructures. As described in section 3.5, 2K uses a dynam-
ically configurable reflective ORB [12] to provide a high-
level of flexibility to applications that can benefit from it by
tuning the CORBA implementation to their specific needs.
But it also keeps the complexity away from applications that
prefer to use the CORBA distributed object model without
worrying about the underlying details.

The reflective ORB solves the problem of how to adapt
the system to the application needs but it does not address
the problem of when and what to adapt. We do that by
maintaining an explicit representation of the dynamic de-
pendencies among system and application components and
by allowing the inspection and monitoring of the dynamic
state. 2K enhances resource management with algorithms
for QoS provision including admission control, negotiation,
reservation, and renegotiation. Application programmers
have then complete access to the system’s dynamic state
and are able to implement application-specific adaptations
while the system guarantees that QoS is preserved.

3. 2K System Model

2K adopts a network-centric model in which all entities,
users, software components, and devices exist in the net-
work and are represented as CORBA objects. Each entity
has a network-wide identity, a network-wide profile, and
dependencies upon other network entities. When a partic-
ular service is instantiated, the entities that constitute that
service are assembled.

In contrast to existing systems where a large number of
non-utilized modules are carried along with the basic sys-
tem installation, our philosophy is based upon a “What You
Need Is What You Get” (WYNIWYG) model. The system
configures itself automatically and loads a minimal set of
components required for executing the user applications in
the most efficient way.

As shown in Figure 1, this philosophy is realized
by leveraging standard CORBA services such as Nam-
ing, Trading, Security, and Persistence and extending the
CORBA model with the addition of services for QoS-
Aware Resource Management, Automatic Configuration,
and Code Distribution.

3.1. Automatic Configuration Service

To address the problems described in the previous sec-
tions, the 2K Automatic Configuration Service manages two
distinct kinds of dependencies:

1. prerequisites, i.e., the requirements for loading an inert
component into the runtime system, and

2. dynamic dependencies among loaded components in a
running system.

As long as the system has access to the requirements
for installing and running a software component, the instal-
lation and configuration of new components can be auto-
mated. As a byproduct of this knowledge, component per-
formance can be improved by analyzing the dynamic state
of system resources, by analyzing the characteristics of each
component, and by configuring them in the most efficient
way.

3.1.1. Prerequisites

The prerequisites for a particular inert component spec-
ify any special requirement for properly loading, configur-
ing, and executing that component. Prerequisites specify 1)
the type and share of hardware resources that a component
needs and 2) the software services (i.e. other components)
it requires.

The first kind of prerequisites lets the QoS-aware Re-
source Management Service determine where, how, and

I
O O |
: LXK
Active ! o
O O @ o
Room 1
QoS- '
Aut i oS>-aware t User !
|
- - - . |
Distributed Operating System Services !
LK
1 middleware
dynamicTAO dynamicTAO dynamicTAO !
I
ACE ACE LegORB LegORB LegORB ACE :
I
libos| |
Solaris Windows Palm Solaris Windows | kZKd
(CE, 98,NT) oS (CE, 98,NT) | o
microkernel|
I
hardware ‘ ‘ hardware hardware ‘ ‘ hardware ‘ ‘ hardware
Figure 1. The 2K overall architecture
when to execute each component. It uses this data to enable pendence graph of distributed components.
proper admission control, resource negotiation, reservation,
and scheduling. depends on depends.on
/\

The second kind of prerequisites determines which aux-
iliary components must be loaded and which other software
services must be located. As the Automatic Configuration
Service parses the software prerequisite specifications, it
verifies whether it is necessary to create new instances of
the required components in the 2K runtime. If necessary, it
contacts the Component Repository, fetches the component
binary code compiled for that specific platform and dynam-
ically loads it.

As of now, the prerequisite specifications are created
manually by component developers. In the future, we ex-
pect that this task will also be automated.

3.1.2. Dynamic Dependencies

While the Automatic Configuration Service parses the pre-
requisite specifications, fetches the required components
from the Component Repository, and dynamically loads
their code into the runtime, it uses the information in the
prerequisite specifications to create a runtime representa-
tion of inter-component dependencies. This representa-
tion uses CORBA objects called ComponentConfigura-
tors (see Figure 2). These objects store the dependencies
as lists of CORBA Interoperable Object References (IORs),
pointing to other component configurators, forming a de-

COMPONENT
CONFIGURATOR
HOOKED
COMPONENTS CLIENTS

COMPONENT
IMPLEMENTATION

Figure 2. Reification of component depen-
dence

With information about its runtime dependencies, appli-
cations can refer to its own requirements, selecting different
components to fulfill their needs in different environments
and at different times. In addition, the underlying system
can manipulate the application dependencies in order to op-
timize performance or to adapt to dynamic changes in the

environment.

When a 2K component fails, the system inspects its de-
pendencies and informs the proper components about the
failure. Applications can customize the system by imple-
menting specialized instances of the ComponentConfigu-
rator, for example, to recover from a failures by replacing
the faulty component with a new one. The same mecha-
nism can be used for adapting the system and its compo-
nents to changing parameters such as network bandwidth,
CPU load, resource availability, and user access patterns.

3.2. Mobile Configuration Agents

In addition to the pull-based approach for code distri-
bution described in 3.1.1 where the system fetches compo-
nents from the Component Repository, 2K also supports a
push mechanism based on mobile agents. In many cases,
this alternate mechanism can improve system performance
by distributing code updates in a scalable way.

The reflective ORBs are organized as a distribution net-
work through which system administrators or applications
can send configuration and inspection agents [11]. Agents
may contain both configuration commands (to change the
configuration of the ORBs and the applications running on
top of them) and new implementations for system and ap-
plication components (in the form of dynamically loadable
libraries or Java bytecode).

The combination of these mechanisms provides a flexi-
ble infrastructure for dynamic software updates. By work-
ing on an environment that requires less manual administra-
tion, users and developers can concentrate on more impor-
tant tasks and improve their productivity.

3.3. QoS-Aware Distributed Resource Management

The 2K Resource Management Service [29] relies on
Local Resource Managers (LRMs) present in each node of
a 2K cluster and whose task is to export the hardware re-
sources in that node to the whole distributed system. LRMs
send periodic updates of the state of their resources to the
Global Resource Manager (GRM), a replicated service that
maintains an approximate view of the cluster resource uti-
lization state. The GRM then utilizes this information as a
hint for performing QoS-aware load distribution within its
cluster. In the future, we intend to combine groups of GRMs
hierarchically to provide hardware resource sharing across
multiple clusters connected through the Internet.

The LRMs are also responsible for performing QoS-
aware admission control, resource negotiation, reservation,
and scheduling of tasks on a single node. This is achieved
with the help of a Dynamic Soft Real-Time Scheduler
(DSRT) [16] that runs as a user-level process in conven-
tional operating systems like Solaris and Windows. It is

able to use the system’s low-level real-time API to provide
QoS guarantees to applications with soft real-time require-
ments.

2K uses a CORBA Trader [18] to supply resource dis-
covery services, which allow applications to request re-
sources based on QoS specifications. In this way, the system
helps parallel and distributed applications achieve the best
performance with the available resources.

3.4. Dynamic Security

Access to 2K services is restricted to controlled CORBA
interfaces. For that, we utilize the OMG Standard Se-
curity Service [18] that comprises authentication, access
control, auditing, object communication encryption, non-
repudiation, and administration of security information.

Our prototype implementation of the CORBA Security
Service utilizes the Cherubim security framework [4] to
support dynamic security policies [21]. The reflective ORB
allows on-the-fly reconfiguration of the Security Service,
facilitating the adoption of situation-specific policies and
mechanisms for authentication and encryption. The imple-
mentation currently supports various access control models
including Discretionary Access Control (DAC) and Manda-
tory Access Control (MAC) [24]. We are now extending it
to support Role-Based Access Control (RBAC) [22], which
will be the basis for security in large-scale 2K environ-
ments.

The possibilities for dynamically configuring the secu-
rity subsystem that 2K provides are very useful for a wide
range of applications in several situations. As an example,
consider a computationally intensive application that runs
initially in a single cluster and later expands itself to use the
processors of several clusters connected via the public In-
ternet. It may be acceptable to use lightweight encryption
and soft access control in the intranet but it may be neces-
sary to apply strong encryption and very tight access control
policies when communicating over the public Internet. The
same happens with mobile computers and PDAs that may
need to use different mechanisms and policies as they move
from one domain to another.

3.5. Reflective ORBs

One of the major constituent elements of 2K is dynam-
icTAO [12], a CORBA-compliant reflective ORB. dynam-
icTAO is an open source extension of the TAO ORB [25]
that enables on-the-fly reconfiguration of the ORB inter-
nal engine and of applications running on top of it. In dy-
namicTAO, we used the ComponentConfigurator model
described in section 3.1.2 to represent the dependence re-
lationships between ORB components and between ORB
and application components. The current version supports

safe dynamic reconfiguration of the strategies that control
aspects such as concurrency, security, and monitoring. dy-
namicTAO exports an interface for loading and unloading
modules into the system runtime, and for inspecting and
changing the ORB configuration state.

After our experience in developing applications with
both open source and commercial ORBs, we came to the
conclusion that typical applications utilize just a very small
fraction of the services and functionalities offered by com-
mon ORBs. Besides, one of the criticism that CORBA of-
ten receives is that it is too heavyweight to be used in small
devices and embedded systems. Although dynamicTAO is
configurable dynamically, its memory footprint is never less
than a few megabytes, which makes it inappropriate for en-
vironments with limited resources and for applications with
stringent resource requirements. This motivated our group
to develop a new ORB architecture called LegORB [23]. It
can be dynamically customized to adapt to resource avail-
ability and to accommodate the requirements of different
applications and devices at different moments.

Unlike TAO, LegORB is designed with componentiza-
tion and dynamic reconfiguration as a fundamental premise.
Careful design and implementation has allowed us to
achieve surprising results in terms of code size. A mini-
mal configuration of LegORB that is able to send simple
CORBA requests to standard ORBs occupies only around
6Kbytes on a PalmPilot running PalmOS. The development
of LegORB is still in its early stages, but the preliminary re-
sults indicate that it will be not only a good choice for em-
bedded systems and PDAs, but also for high-performance
workstations where LegORB can perform even faster than
highly-optimized commercial ORBs.

4. LessonsLearned

In the past three years of work on the design and imple-
mentation of 2K, our research group has learned a number
of lessons that we consider significant.

It is unlikely that a large number of users would be will-
ing to adopt a completely new research operating system to
use on a daily basis. Thus, we decided that 2K would have
to be able to run on top of other operating systems and,
if necessary, co-exist with traditional applications. In that
manner, users of traditional systems can extend the func-
tionality of their machines by using the QoS-awareness,
network-centrism, code distribution, and dynamic config-
uration properties of 2K to manage their conventional sys-
tem. The users that need the extra control and performance
offered by a customizable microkernel can choose to boot
their machines with the 2K microkernel [1].

The use of a standard platform like CORBA provides
two important benefits. First, we have the opportunity of
re-using a large number of distributed services and applica-

tions that were developed by the CORBA community, sav-
ing us a lot of development time. Second, our system ser-
vices become available to a wide community and accessible
by any CORBA client. Since the interfaces are defined us-
ing OMG IDL, 2K can be used by applications built on a
completely different code base; all the applications need to
interact with 2K is a standard CORBA ORB. In addition,
the use of IDL interfaces among distributed and even co-
located system components improves system organization
considerably.

On the other hand, the possibility of changing the imple-
mentation of the different aspects of the CORBA middle-
ware through the use of a reflective ORB opens new pos-
sibilities in terms of code re-use. If a scientific application
requires a special underlying protocol or a particular opti-
mization, the programmer can implement it as a reflective
ORB module, making it available to other applications with
similar needs. The reflective architecture allows the deploy-
ment of these different protocols and optimizations without
modifications to the application code.

Finally, by implementing CORBA interfaces for hetero-
geneous computers and devices, one can deal with the de-
tails of their specific protocols only once. After the CORBA
wrapper is completed, the device becomes part of the dis-
tributed system and can be accessed easily by any other en-
tity present in the network.

5. Performance Consider ations

Our reflective ORB is an extension of TAO [25], a
CORBA-compliant ORB that optimizes inter-object com-
munication by using different protocols depending on the
location of the objects. Calls to co-located servers can be
as fast as virtual method calls on a C++ object. The gen-
eral impression that CORBA was too large and slow cor-
responds to first-generation brokers. Recent performance
measurements [20] suggest that contemporary CORBA im-
plementations are efficient and that even faster implementa-
tions will appear.

On Linux running on a single 450MHz Pentium Il with
256M of RAM, it takes 236 us for TAQO to perform a cross-
domain method invocation with a single parameter [13]
which is an acceptable figure for a wide-range of applica-
tions. When a better performance is required, applications
may customize the ORB to optimize the system. TAO sup-
ports pluggable protocols [19], which allow specific trans-
ports to be used to maximize application performance.

5.1. Mobile Configuration Agents
We measured the performance of our infrastructure for

dynamic configuration based on mobile agents (see section
3.2) by injecting configuration and inspection agents into

a network of six ORBs running on Sun Ultra-2 machines
connected by a 100Mbps Ethernet. The inspection agent
carried code to collect information about the state of the six
reflective ORBs, bringing it back to the administrator. The
total average time for sending, processing, and returning the
agent was 101 milliseconds.

The configuration agent carried instructions to load a
30Khbyte component to the runtime of the six ORBs and at-
tach the new component to a running application in each of
the ORBs. It took 265 milliseconds, on average, to com-
plete its task and return the results to the administrator.

Although these numbers can be improved significantly
with more tuning and optimizations, they show that it is pos-
sible to carry out dynamic configuration of a collection of
distributed components in few tenths of a second.

In another experiment, we measured the performance of
our infrastructure in a wide-area system composed of nine
nodes, three in the USA, three in Brazil, and three in Spain.
Figure 3 shows a comparison between the performance of
our agent-based approach and a conventional point-to-point
approach as the size of the component being uploaded in-
creases. Each value is the average of ten runs of the experi-
ment, the vertical bars represent the standard deviation.

40

T T
agent distribution

point-to-point -+~

35

@
S

N
a

Round-Trip Tine (s)
5 3
T

L L L L L L
8 16 32 64 128 256

n
05 1 2 4
Conponent Size (KBytes)

Figure 3. Agent uploading a new component
to nine nodes

In [11] we present a more detailed analysis of our mo-
bile agent infrastructure and discuss the improvements that
agents can bring to the management and reconfiguration of
wide-area distributed systems.

5.2. Automatic Configuration

The 2K Automatic Configuration Service is imple-
mented as a library that can be linked to any application.
A program enhanced with this service becomes capable of
fetching components from a remote Component Repository

and dynamically loading and assembling them into its lo-
cal address-space. The library requires only 157Kbytes of
memory on Solaris 7, which makes it usable even on ma-
chines with limited resources such as a PalmPilot.

Figure 4 shows the total time for the service to load from
one to eight components of 19.2Kbytes each. The time in-
cludes fetching the component code from the remote Com-
ponent Repository, saving it in a local cache, parsing the
component prerequisites, and dynamically linking the code
in the local address-space. The experiments were carried
out on two Sparc Ultra-60 machines running Solaris 7 and
connected by a 100Mbps Ethernet. The Component Reposi-
tory was executed on one of the machines and a test applica-
tion with the Automatic Configuration Service on the other.
Each value is the average of five runs of the experiment.

100

40 |

Total Time (ns)

.
0 1 2 3 4 5 6 7 8
Number of Conponents

Figure 4. Automatic Configuration Service
performance

Although there is still much room for improvements and
performance optimizations in the protocols used by the Au-
tomatic Configuration Service, the results presented here
are very encouraging. They demonstrate that it is possi-
ble to carry out automatic configuration of a distributed
component-based application, in a local network, within a
tenth of a second, which is an acceptable delay for a wide
range of applications.

6. Related Work

Our work builds on previous and ongoing research in a
number of different areas including operating system archi-
tecture, computational grids, configurable middleware, mo-
bile agents, dynamic security, dynamic configuration, and
software architecture.

SPIN [2] and VINO [26] are adaptable systems which
load code into the kernel to allow system extensions. We
build on their work, and employ code downloading (through

the network) to install new components into 2K nodes.
Choices and its derivatives [3] implement operating system
services by means of a collection of object-oriented frame-
works. These systems, however, do not address heteroge-
neous distributed systems.

Spring [15] is an object-oriented, distributed operating
system which also uses IDL-based interfaces for system ser-
vices. 2K takes the ideas introduced by Spring a step further
by adopting the CORBA communication model and stan-
dard CORBA services as the glue to connect heterogeneous
hardware and software platforms and by representing and
managing inter-component dependence.

Systems like Condor [14] are targeted to high perfor-
mance computing on clusters of workstations. They rely on
a central resource manager that starts processes on worksta-
tions with spare cycles.

The Globus project [6] provides a “computational grid”
[7] integrating heterogeneous distributed resources in a sin-
gle wide-area system. It supports scalable resource man-
agement based on a hierarchy of resource managers sim-
ilar to those of 2K. But, unlike 2K, Globus is tailored to
computationally-intensive applications such as large-scale
simulations and teleimmersive applications.

Although the Globus design includes a service for man-
aging application code (the Globus Executable Manage-
ment service or GEM), the current implementation does not
yet include it as a separate service. The name of this ser-
vice, however, implies that Globus views an application as
a single executable, rather than a collection of components
that can be dynamically instantiated. Since Globus is one
of the most important projects in this area, we hope that
their system evolves to incorporate support for dynamic,
component-based applications.

Recent research targeted at using the Internet as “the
computer” has led to systems like Globe [28], Legion [9, 8],
and WebOS [27]. Although some may be customizable,
they do not consider adaptability, dependence management,
and automatic configuration as a primary requirement. To
the best of our knowledge, none of the systems mentioned
above include a model enabling automatic configuration
of component-based systems on distributed, heterogeneous
environments.

Legion is the system that shares most similarities with
2K as it also builds on a distributed, reflective object model.
However, the Legion researchers focused on developing a
new object model from scratch. Legion applications must
be built using Legion-specific libraries, compiler, and run-
time system (the Legion’s ORB). In contrast, we focused on
leveraging CORBA technology to build an integrated archi-
tecture that could provide the same functionality as Legion,
while still preserving complete interoperability with other
CORBA systems. In addition, our work emphasizes au-
tomatic configuration and dependence management, which

are not addressed by Legion.

One of the major contributions of our work is to combine
some of the important research results provided by WebOS,
Globe, Legion, and Globus into a completely standard en-
vironment based on CORBA objects and standard CORBA
services. It also brings automatic configuration — previously
limited to isolated tools for application development — to
the core of a distributed, object-oriented operating system.
With the evolution of mechanisms for automatic configura-
tion, such as the ones available in 2K, we foresee a bright fu-
ture for distributed operating systems for high-performance
computing that will be easy to manage, comfortable to use,
and extremely powerful.

7. Conclusions

We expect great changes in the environments for high
performance distributed computing in the first decade of the
new millennium, including higher degrees of dynamism,
mobility, heterogeneity, and interactions among heteroge-
neous computing devices connected to global networks.
Traditional middleware and operating system architectures
are not prepared to provide efficient resource management
for these highly dynamic heterogeneous environments.

In this paper, we presented an integrated operating sys-
tem architecture for managing distributed heterogeneous re-
sources using recent advances in software systems technol-
ogy. 2K provides support for code distribution, configura-
tion of component-based distributed applications, and QoS-
aware distributed resource management. 2K can run both as
“middleware” on top of traditional operating systems and as
an integrated architecture with our customized microkernel
directly on top of the hardware.

2K uses and offers services based on the CORBA stan-
dard which opens a wide variety of possibilities for integra-
tion with other systems and applications.

Our ongoing work in 2K includes a flexible and adapt-
able distributed data management system [10], a service for
managing user environments in mobile and wide-area sys-
tems [5], an infrastructure for managing active (physical)
spaces, and mechanisms for enabling dynamic instantiation
of distributed QoS-aware multimedia applications [17].

Availability
Documentation and source code for the 2K microker-

nel, middleware, and distributed services can be found at
http://choi ces. cs. ui uc. edu/ 2K

References

[1] F. J. Ballesteros, C. Hess, F. Kon, S. Arévalo, and R. H.
Campbell. Object Orientation in Off++ - A Distributed

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

Adaptable pKernel. In ECOOP’99 Workshop on Object Ori-
entation and Operating Systems, pages 49-53, Lisbon, June
1999.

B. N. Bershad et al. Extensibility, Safety and Performance
in the SPIN Operating System. In Proc. of the 15th SOSP.
ACM, December 1995.

R. Campbell, N. Islam, P. Madany, and D. Raila. Designing
and Implementing Choices: an Object-Oriented System in
C++. Communications of the ACM, 36(9):117-136, Sept.
1993.

R. Campbell and T. Qian. Dynamic Agent-based Secu-
rity Architecture for Mobile Computers. In Proceedings of
the Second International Conference on Parallel and Dis-
tributed Computing and Networks (PDCN’98), pages 291—
299, Australia, December 1998.

D. Carvalho, F. Kon, F. Ballesteros, M. Roméan, R. Camp-
bell, and D. Mickunas. Management of execution envi-
ronments in 2k. In Proceedings of the Seventh Interna-
tional Conference on Parallel and Distributed Systems (IC-
PADS’2000). IEEE Computer Society, July 2000.

I. Foster and C. Kesselman. The Globus Project: A Status
Report. In Proceedings of the IPPS/SPDP ’98 Heteroge-
neous Computing Workshop, pages 4-18, 1998.

I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Pub-
lishers, San Francisco, 1999.

A. Grimshaw, A. Ferrari, F. Knabe, and M. Humpbhrey.
Legion: an Operating Systems for Wide-area Computing.
Technical Report CS-99-12, University of Virginia, March
1999.

A. Grimshaw, W. Wulf, et al. The Legion Vision of a World-
wide Virtual Computer. Communications of the ACM, 40(1),
January 1997.

C. K. Hess, F. J. Ballesteros, and R. H. Campbell. An Adapt-
able Distributed File Service. In Proceedings of the ECOOP
PhD Workshop on Object Oriented Systems (PHDOOS’00),
Cannes, France, June 2000.

F. Kon, B. Gill, M. Anand, R. H. Campbell, and M. D. Mick-
unas. Secure Dynamic Reconfiguration of Scalable CORBA
Systems with Mobile Agents. In Proceedings of the IEEE
Joint Symposium on Agent Systems and Applications / Mo-
bile Agents (ASA/MA’2000), Zurich, September 2000.

F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. C. Ma-
galhdes, and R. H. Campbell. Monitoring, Security, and
Dynamic Configuration with the dynamicTAO Reflective
ORB. In Proceedings of the IFIP/ACM International Con-
ference on Distributed Systems Platforms and Open Dis-
tributed Processing (Middleware’2000), number 1795 in
LNCS, pages 121-143, New York, April 2000. Springer-
Verlag.

D. L. Levine, S. Flores-Gaitan, and D. C. Schmidt. An Em-
pirical Evaluation of OS Support for Real-Time CORBA
Object Request Brokers. In Proceedings of the Interna-
tional Symposium on Distributed Objects and Applications
DOA99, Edimburgh, Scotland, September 1999.

M. Litzkow, M. Livny, and M. W. Mutka. Condor - A Hunter
of Idle Workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, pages 104—
111, 1988.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

J. Mitchell et al. An Overview of the Spring System. In
Proceedings of Compcon ’Spring 1994, Feb. 1994.

K. Nahrstedt, H. hua Chu, and S. Narayan. QoS-aware
Resource Management for Distributed Multimedia Applica-
tions. Journal of High-Speed Networking, Special Issue on
Multimedia Networking, 7:227-255, 1998.

K. Nahrstedt, D. Wichadakul, and D. Xu. Distributed
QoS Compilation and Runtime Instantiation. In Proceed-
ings of the IEEE/IFIP International Workshop on QoS
(IWQ0S’2000), Pittsburgh, June 2000.

OMG. CORBAservices: Common Object Services Spec-
ification. Object Management Group, Framingham, MA,
1998. OMG Document 98-12-09.

C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Par-
sons. The Design and Performance of a Pluggable Proto-
cols Framework for Real-time Distributed Object Comput-
ing Middleware. In Proceedings of the IFIP/ACM Middle-
ware’2000, New York, April 2000.

I. Pyarali, C. O’Ryan, D. Schmidt, N. Wang, A. S. Gokhale,
and V. Kachroo. Using Principle Patterns to Optimize
Real-Time ORBs. IEEE Concurrency, 8(1):16-25, January-
March 2000.

T. Qian. Dynamic Authorization Support in Large Dis-
tributed Systems. PhD thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign, Nov.
1999.

Ravi S. Sandhu and Edward J. Coyne and Hal L. Feinstein
and Charles E. Youman. Role-based Access Control Mod-
els. IEEE Computer, 29(2):38-47, Feb. 1996.

M. Roman, D. Mickunas, F. Kon, and R. H. Campbell.
LegORB and Ubiquitous CORBA. In Proceedings of the
IFIP/ACM Middleware’2000 Workshop on Reflective Mid-
dleware, pages 1-2, Palisades, NY, April 2000.

R. S. Sandu and P. Samarati. Access Control: Principles
and Practice. IEEE Communications Magazine, 32(9):40-
48, Sept. 1994.

D. C. Schmidt and C. Cleeland. Applying Patterns to De-
velop Extensible ORB Middleware. IEEE Communications
Magazine Special Issue on Design Patterns, 37(4):54-63,
May 1999.

C. Small and M. Seltezer. VINO: An Integrated Platform
for Operating System and Database Research. Technical
report, Computer Science Laboratory, Harvard University,
Cambridge, MA 02138, 1994.

A. Vahdat, T. Anderson, M. Dahlin, D. Culler, E. Belani,
P. Eastham, and C. Yoshikawa. WebQOS: Operating System
Services For Wide Area Applications. In Proceedings of
the Seventh Symposium on High Performance Distributed
Computing, July 1998.

M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe:
A Wide-Area Distributed System. IEEE Concurrency,
7(1):70-78, January 1999.

T. Yamane. The Design and Implementation of the 2K
Resource Management Service. Master’s thesis, Depart-
ment of Computer Science, University of Illinois at Urbana-
Champaign, February 2000.

