
ECE 677: Distributed Computing Systems

Salim Hariri
High Performance Distributed Computing Laboratory
University of Arizona

Tele: (520) 621­4378
Www.ece.arizona.edu/~hpdc
Fall 2010

ECE 677 Salim Hariri/University of
Arizona

Distributed Systems Design Framework
(Cont)

Distributed Computing Paradigms (DCP)

Computation Models Communication Models

Functional Parallel Data Parallel Message Passing
Shared Memory

System Architecture and Services (SAS)

Architecture Models System Level Services

Computer Networks and Protocols (CNP)

Computer Networks Communication Protocols

n What: standard for a message passing library (C, C++
and Fortran) to be used for message-passing parallel
computing.

n When: 92-94 MPI1; 95-97 MPI2
n Size: MPI1: 127 calls; MPI2: ~150 calls.

n Many parallel programs can be written with 6 basic
functions.

n Functions are orthogonal.
n Support for many different communication paradigms.
n Support for different communication modes.
n Options offered via different function names, rather than

parameters.
n Where:

n Parallel computers and clusters (distributed or shared
memory)

n NOWs (Network of workstations, heterogeneous systems)
n Find more: http://www.mcs.anl.gov/Projects/MPI

Brief overview

http://www.mcs.anl.gov/Projects/MPI

Companion Material

n Online examples available at
http://www.mcs.anl.gov/mpi/tutorial

n ftp://ftp.mcs.anl.gov/mpi/mpiexmple.tar.gz
contains source code and run scripts that
allows you to evaluate your own MPI
implementaton

http://www.mcs.anl.gov/mpi/tutorial
ftp://ftp.mcs.anl.gov/mpi/mpiexmple.tar.gz

The Message-Passing Model

n A process is (traditionally) a program counter and
address space

n Processes may have multiple threads(program
counters and associated stacks) sharing a single
address space. MPI is for communication among
processes, which have separate address spaces.

n Interprocess communication consists of
n Synchronization/Asynchronization
n Movement of data from one process’s address space to

another’s

What is message passing?

n Data transfer.

n Requires cooperation of sender and
receiver

n Cooperation not always apparent in
code

Communication Modes

n Based on the type of send:
n Synchronous: Completes once the

acknowledgement is received by the sender.
n Buffered send: completes immediately,

unless if an error occurs.
n Standard send: completes once the message

has been sent, which may or may not imply
that the message has arrived at its
destination.

n Ready send: completes immediately, if the
receiver is ready for the message it will get
it, otherwise the message is dropped silently.

Synchronous Vs. Asynchronous

n A synchronous communication is not
complete until the message has been
received.

n An asynchronous communication
completes as soon as the message is on
the way.

Synchronous Vs. Asynchronous
(cont.)

Blocking vs. Non-Blocking

n Blocking, means the program will not
continue until the communication is
completed.

n Non-Blocking, means the program will
continue, without waiting for the
communication to be completed.

What is MPI?
n A message-passing library specifications:

n Extended message-passing model
n Not a language or compiler specification
n Not a specific implementation or product

n For parallel computers, clusters, and heterogeneous networks.

n Communication modes: standard, synchronous, buffered, and
ready.

n Designed to permit the development of parallel software libraries.

n Designed to provide access to advanced parallel hardware for
n End users
n Library writers
n Tool developers

Why to use MPI?

n MPI provides a powerful, efficient, and portable
way to express parallel programs.

n MPI was explicitly designed to enable libraries
which may eliminate the need for many users to
learn (much of) MPI.

n Portable !!!!!!!!!!!!!!!!!!!!!!!!!!

Is MPI large or small?

n MPI is large(125 functions)
n MPI’s extensive functionality requires many functions.
n Number of functions not necessarily a measure of

complexity.
n MPI is small(6 functions)

n Many parallel programs can be written with just 6 basic
functions.

n MPI is just right
n One can access flexibility when it is required.
n One need not master all parts of MPI to use it.
n MPI is whatever size you like

Features that are NOT part of
MPI
n Process Management

n Remote memory transfer

n Threads

n Virtual shared memory

Why MPI is simple?

n Many parallel programs can be
written using just these six
functions, only two of which are
non-trivial;

n MPI_INIT
n MPI_FINALIZE
n MPI_COMM_SIZE
n MPI_COMM_RANK
n MPI_SEND
n MPI_RECV

Skeleton MPI Program

#include <mpi.h>

main(int argc, char** argv) {
 MPI_Init(&argc, &argv);

 /* main part of the program */
 Use MPI function call depend on your data

partition and parallization architecture
 MPI_Finalize();
}

Initializing MPI

n The first MPI routine called in any MPI
program must be the initialization
routine MPI_INIT

n MPI_INIT is called once by every
process, before any other MPI routines

int mpi_Init(int *argc, char **argv);

Startup and endup

n int MPI_Init(int *argc, char ***argv)
n The first MPI call in any MPI process
n Establishes MPI environment
n One and only one call to MPI_INIT per

process
n int MPI_Finalize(void)

n Exiting from MPI
n Cleans up state of MPI
n The last call of an MPI process

A minimal MPI program(c)

#include “mpi.h”

#include <stdio.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf(“Hello, world!\n”);

MPI_Finalize();

Return 0;

}

Commentary

n #include “mpi.h” provides basic MPI
definitions and types.

n MPI_Init starts MPI
n MPI_Finalize exits MPI
n Note that all non-MPI routines are local;

thus printf urn on each process

Notes on C

n In C:
n mpi.h must be included by using #include

mpi.h
n MPI functions return error codes or

MPI_SUCCESS

Error handling

n By default, an error causes all processes to
abort.

n The user can have his/her own error handling
routines.

n Some custom error handlers are available for
downloading from the net.

Finding out about the environment

n Two important questions that arise early in a
parallel program are:

-How many processes are participating in this computation?

-Which one am I?

MPI provides functions to answer these
questions:

-MPI_Comm_size reports the number of processes.

-MPI_Comm_rank reports the rank, a number between 0 and size-
1, identifying the calling process.

Better Hello(c)

#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv[])
{
int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf(“I am %d of\n”, rank, size);

MPI_Finalize();

return 0;

}

Some basic concepts

n Processes can be collected into groups.
n Each message is sent in a context, and must be

received in the same context.
n A group and context together form a communicator.
n A process is identified by its rank in the group

associated with a communicator.
n There is a default communicator whose group

contains all initial processes, called
MPI_COMM_WORLD.

n Migrate your ECE account to ENGR
domain using the online web tool at

https://account.engr.arizona.edu.

ECE 677 Salim Hariri/University of
Arizona

To use MPI in the ECE systems

https://account.engr.arizona.edu/

ECE DRACO Cluster
The hostname of the MPI cluster is draco.ece.arizona.edu. The individual
hostnames of the cluster systems are as follows:

ursa
alcaid

perseus
altair
cetus
sirius

centauri
pegasus

.rhosts File
In order for MPI to work, users will need the following in the ".rhosts" file in
their home directory:

ursa.ece.arizona.edu username
alcaid.ece.arizona.edu username

perseus.ece.arizona.edu username
altair.ece.arizona.edu username
cetus.ece.arizona.edu username
sirius.ece.arizona.edu username

centauri.ece.arizona.edu username
pegasus.ece.arizona.edu username

Compiling and running
n Head file

n Fortran -- mpif.h
n C -- mpi.h (*we use C in this presentation)

n Compile:
n implementation dependent. Typically requires

specification of header file directory and MPI library.
n mpiCC –o destination-filename source-file.c
n mpiCC filename

n Run:
n mpirun -np <# proc> <executable>

#include <stdio.h>
#include <string.h> // this allows us to manipulate text strings
#include "mpi.h" // this adds the MPI header files to the program

int main(int argc, char* argv[]) {
 int my_rank; // process rank
 int p; // number of processes
 int source; // rank of sender
 int dest; // rank of receiving process
 int tag = 0; // tag for messages
 char message[100]; // storage for message
 MPI_Status status; // stores status for MPI_Recv statements

 // starts up MPI
 MPI_Init(&argc, &argv);
 // finds out rank of each process
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 // finds out number of processes
 MPI_Comm_size(MPI_COMM_WORLD, &p);

 if (my_rank!=0) {
 sprintf(message, "Greetings from process %d!", my_rank);
 dest = 0; // sets destination for MPI_Send to process 0
 // sends the string to process 0
 MPI_Send(message, strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 } else {
 for(source = 1; source < p; source++){
 // receives greeting from each process
 MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);
 printf("%s\n", message); // prints out greeting to screen
 }
 }
 MPI_Finalize(); // shuts down MPI
 return 0;
}

Result

n mpicc hello.c
n mpirun -np 6 a.out
Greetings from process 1!

Greetings from process 2!

Greetings from process 3!

Greetings from process 4!

Greetings from process 5!

MPI blocking send

MPI_SEND(void *start, int
count,MPI_DATATYPE datatype, int dest, int
tag, MPI_COMM comm)

n The message buffer is described by
(start, count, datatype).

n dest is the rank of the target process in
the defined communicator.

n tag is the message identification number.

MPI blocking receive
 MPI_RECV(void *start, int count,
MPI_DATATYPE datatype, int source, int tag,
MPI_COMM comm, MPI_STATUS *status)
n Source is the rank of the sender in the communicator.

n The receiver can specify a wildcard value for souce (MPI_ANY_SOURCE) and/or a
wildcard value for tag (MPI_ANY_TAG), indicating that any source and/or tag are
acceptable

n Status is used for exrtra information about the received message if a wildcard
receive mode is used.

n If the count of the message received is less than or equal to that described by
the MPI receive command, then the message is successfully received. Else it is
considered as a buffer overflow error.

More comment on send and receive

n A receive operation may accept
messages from an arbitrary sender, but
a send operation must specify a unique
receiver.

n Source equals destination is allowed,
that is, a process can send a message
to itself.

Review of Basic MPI routines
n MPI is used to create parallel programs based on

message passing
n Usually the same program is run on multiple

processors
n The 6 basic calls in MPI are:

n MPI_INIT(ierr)
n MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
n MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
n MPI_Send(buffer, count,MPI_INTEGER,destination, tag,

MPI_COMM_WORLD, ierr)
n MPI_Recv(buffer, count, MPI_INTEGER,source,tag,

MPI_COMM_WORLD, status,ierr)
n MPI_FINALIZE(ierr)

ECE 677 Salim Hariri/University of
Arizona

Communication Primitives

n Communications on distributed memory computers:
n Point to Point
n One to All Broadcast
n All to All Broadcast
n One to All Personalized
n All to All Personalized
n Shifts
n Collective Computation

MPI basic send/receive

n We need to fill in the details in

Things that need specifying:
How will “data” be described?
How will processes be identified?
How will the receiver recognize/screen messages?
What will it mean for these operation to complete?

Process 0

Send(data)

Process 1

Receive(data
)

Data Types

n The data message which is sent or received is
described by a triple (address, count, datatype).

n The following data types are supported by MPI:
n Predefined data types that are corresponding to

data types from the programming language.
n Arrays.
n Sub blocks of a matrix
n User defined data structure.
n A set of predefined data types

MPI Data Types in C

C MPI Types

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE -

MPI_PACKED -

Why defining the data types during
the send of a message?

 Because communications take place
between heterogeneous machines. Which may
have different data representation and length
in the memory.

Broadcast and reduce

n MPI_Bcast(buffer, count, datatype, root,
comm)
n Broadcast the message of length count in buffer

from the process root to all other processes in the
group. All processes must call with same
arguments.

n MPI_Reduce(sbuf, rbuf, count, stype, op,
root, comm)
n Apply the reduction function op to the data of

each process in the group (type stype in sbuf) and
store the result in rbuf on the root process. op can
be a pre-defined function, or defined by the user.

Global Communications in MPI: Broadcast

n All nodes call MPI_Bcast
n One node (root) sends a message all

others receive the message
n C

§ MPI_Bcast(&buffer, count, datatype, root, communicator);

n Fortran
§ call MPI_Bcast(buffer, count, datatype, root, communicator,

ierr)

n Root is node that sends the message

Global Communications in
MPI: Broadcast
n broadcast.c is a parallel program to

broadcast data using MPI_Bcast

n Initialize MPI
n Have processor 0 broadcast an integer
n Have all processors print the data
n Quit MPI

Global Communications in MPI: Broadcast
/**
This is a simple broadcast program in MPI
**/
#include <stdio.h>
#include "mpi.h"
int main(argc,argv)
int argc;
char *argv[];
{
 int i,myid, numprocs;
 int source,count;
 int buffer[4];
 MPI_Status status;
 MPI_Request request;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 source=0;
 count=4;
 if(myid == source){
 for(i=0;i<count;i++)
 buffer[i]=i;
 }
 MPI_Bcast(buffer,count,MPI_INT,source,MPI_COMM_WORLD);
 for(i=0;i<count;i++)
 printf("%d ",buffer[i]);
 printf("\n");
 MPI_Finalize();
}

Global Communications in MPI:
Reduction
n Used to combine partial results from all

processors
n Result returned to root processor
n Several types of operations available. For

example summation, maximum etc
n Works on single elements and arrays

Global Communications in MPI:
MPI_Reduce

n C
n int MPI_Reduce(&sendbuf, &recvbuf, count,

datatype, operation,root, communicator)
n Fortran

n cal l MPI_Reduce(sendbuf, recvbuf, count,
datatype, operation,root, communicator,
ierr)

n Parameters
n Like MPI_Bcast, a root MPI process is specified.
n Operation is mathematical operation

Global Communications in MPI:
MPI_Reduce

 MPI_MAX Maximum

 MPI_MIN Minimum

 MPI_PROD Product

 MPI_SUM Sum

 MPI_LAND Logical and

 MPI_LOR Logical or

 MPI_LXOR Logical exclusive or

 MPI_BAND Bitwise and

 MPI_BOR Bitwise or

 MPI_BXOR Bitwise exclusive or

 MPI_MAXLOC Maximum value and location

 MPI_MINLOC Minimum value and location

Example: PI in C - 1

#include "mpi.h"
#include <math.h>
int main(int argc, char *argv[])
{
int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (!done) {
 if (myid == 0) {
 printf("Enter the number of intervals: (0 quits) ");
 scanf("%d",&n);
 }
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if (n == 0) break;

Example: PI in C - 2

 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += 4.0 / (1.0 + x*x);
 }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);
 if (myid == 0)
 printf("pi is approximately %.16f, Error is .16f\n",
 pi, fabs(pi - PI25DT));
}
MPI_Finalize();

 return 0;

}

Point to Point Communications in MPI
n Basic operations of Point to Point (PtoP)

communication in MPI
n Several steps are involved in the PtoP

communication
n Sending process

n data is copied to the user buffer by the user
n User calls one of the MPI send routines
n System copies the data from the user buffer to the

system buffer
n System sends the data from the system buffer to the

destination processor

Point to Point Communications in MPI

n Receiving process
n User calls one of the MPI receive subroutines
n System receives the data from the source

process, and copies it to the system buffer
n System copies the data from the system

buffer to the user buffer
n User uses the data in the user buffer

Point to Point Communications in MPI

Process 0 : User mode

 sendbuf

Call send routine

Now sendbuf can be reused

Kernel mode

Copying data from sendbuf to
systembuf

Send data from sysbuf to
dest

data
Process 1 : User mode Kernel mode

Call receive routine receive data from
src to
systembuf

Copying data from sysbuf
to recvbuf

sysbuf

sysbuf

recvbuf

Now recvbuf contains
valid data

n More information of point to point
communication are in the Appendixes

ECE 677 Salim Hariri/University of
Arizona

MPI tags

n Message are sent with an accompanying
user-defined integer tag, to assist the
receiving process in identifying the
message.

n Message can be screened at the
receiving end by specifying a specific
tag, or not screened by specifying
MPI_ANY_TAG as the tag in a receive.

n Some non-MPI message-passing systems
have called tags”message types”. MPI
calls them tags to avoid confusion with
datatype.

MPI_Barrier

n Blocks the caller until all members in the
communicator have called it.

n Used as a synchronization tool.
n C

§ MPI_Barrier(comm)

n Fortran
§ Call MPI_BARRIER(COMM, IERROR)

n Parameter
n Comm: communicator (often

MPI_COMM_WORLD)

Overview of Some Advanced MPI Routines

n Can split MPI communicators (MPI_Comm_split)
n Probe incoming messages (MPI_Probe)
n Asynchronous communication (MPI_Isend,

MPI_Irecv, MPI_Wait, MPI_Test etc)
n Scatter different data to different processors

(MPI_Scatter), Gather (MPI_Gather)
n MPI_AllReduce, MPI_Alltoall
n Derived data types (MPI_TYPE_STRUCT etc)
n MPI I/O

Group routines
n MPI_Group_size returns number of processes in group
n MPI_Group_rank returns rank of calling process in group
n MPI_Group_compare compares group members and

group order
n MPI_Group_translate_ranks translates ranks of

processes in one group to those in another group
n MPI_Comm_group returns the group associated with a

communicator
n MPI_Group_union creates a group by combining two

groups
n MPI_Group_intersection creates a group from the

intersection of two groups

Group routines ...

n MPI_Group_difference creates a group from the
difference between two groups

n MPI_Group_incl creates a group from listed
members of an existing group

n MPI_Group_excl creates a group excluding listed
members of an existing group

n MPI_Group_range_incl creates a group according
to first rank, stride, last rank

n MPI_Group_range_excl creates a group by
deleting according to first rank, stride, last rank

n MPI_Group_free marks a group for deallocation

Communicator routines
n MPI_Comm_size returns number of processes in communicator's

group
n MPI_Comm_rank returns rank of calling process in

communicator's group
n MPI_Comm_compare compares two communicators
n MPI_Comm_dup duplicates a communicator
n MPI_Comm_create creates a new communicator for a group
n MPI_Comm_split splits a communicator into multiple, non-

overlapping communicators
n MPI_Comm_free marks a communicator for deallocation

Collective communication

n MPI_Allgather All processes gather messages
n MPI_Allreduce Reduce to all processes
n MPI_Alltoall All processes gather distinct messages
n MPI_Bcast Broadcast a message
n MPI_Gather Gather a message to root
n MPI_Reduce Global reduce operation
n MPI_ReduceScatter Reduce and scatter results
n MPI_Scatter Scatter a message from root
n MPI_Scan Global prefix reduction

A

A

P0

P1

P2

P3

P0

P1

P2

P3

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

More Collective Data
Movement

A

B

D

C

A0 B0 C0D0

A1 B1 C1D1

A3 B3 C3D3

A2 B2 C2D2

A0 A1 A2 A3

B0 B1 B2 B3

D0D1D2D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

Collective Computation

P0

P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A

B

D

C

ABCD

A

AB

ABC

ABCD

Reduce

Scan

Timing

n MPI Wtime() returns the wall-clock
time.

double start, finish, time;

MPI_Barrier(MPI_COMM_WORLD);

start = MPI_Wtime();

…

…

MPI_Barrier(MPI_COMM_WORLD);

finish = MPI_Wtime();

time = finish - start;

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_size 1 0.0 0.000

MPI_Comm_rank 1 0.0 0.000

MPI_Send 500 1024.0 0.001

MPI_Recv 500 1024.0 0.008

MPI_Barrier 500 0.0 0.013

total communication time = 0.022 seconds.

total elapsed time = 3.510 seconds.

user cpu time = 3.500 seconds.

system time = 0.010 seconds.

maximum memory size = 15856 KBytes.

Message size distributions:

MPI_Send #calls avg. bytes time(sec)

 500 1024.0 0.001

MPI_Recv #calls avg. bytes time(sec)

 500 1024.0 0.008

Call Graph Section:

communication time = 0.022 sec, parent = poisson

 MPI Routine #calls time(sec)

 MPI_Send 500 0.001

 MPI_Recv 500 0.008

 MPI_Barrier 500 0.013

communication time = 0.000 sec, parent = dot

 MPI Routine #calls time(sec)

 MPI_Comm_size 1 0.000

 MPI_Comm_rank 1 0.000

MPI Trace Output

MPI-2

n MPI-2 new topics:
n process creation and management,

including client/server routines
n one-sided communications (put/get, active

messages)
n extended collective operations
n external interfaces
n I/O

Designing MPI programs

n Partitioning
n Before tackling MPI

n Communication
n Many point to collective

operations
n Agglomeration

n Needed to produce MPI
processes

n Mapping
n Handled by MPI

MPI
n Pros:

n Very portable
n Requires no special compiler
n Requires no special hardware but

can make use of high
performance hardware

n Very flexible -- can handle just
about any model of parallelism

n No shared data! (You don’t have
to worry about processes
"treading on each other's data" by
mistake.)

n Can download free libraries for
your Linux PC!

n Forces you to do things the "right
way" in terms of decomposing
your problem.

Ø Cons:
l All-or-nothing parallelism

(difficult to incrementally
parallelize existing serial codes)

l No shared data! Requires
distributed data structures

l Could be thought of assembler
for parallel computing -- you
generally have to write more
code

l Partitioning operations on
distributed arrays can be messy.

MPI v.s. OpenMP

n Message passing v.s. shared data
n Processes v.s. Threads
n MPI has no work sharing structure.

OpenMP

n Pros:
n Incremental parallelism -- can parallelize existing serial codes

one bit at a time
n Quite simple set of directives
n Shared data!
n Partitioning operations on arrays is very simple.

n Cons:
n Requires proprietary compilers
n Requires shared memory multiprocessors
n Shared data!
n Having to think about what data is shared and what data is

private
n Cannot handle models like master/slave work allocation (yet)
n Generally not as scalable (more synchronization points)
n Not well-suited for non-trivial data structures like linked lists,

trees etc

n Homework #1 (programming) will be
posted.

n Due: September 14 before the class

ECE 677 Salim Hariri/University of
Arizona

Appendix

ECE 677 Salim Hariri/University of
Arizona

Unidirectional Communication
n Blocking send and blocking receive

n if (myrank == 0) then
call MPI_Send(…)

elseif (myrank == 1) then
call MPI_Recv(….)

 endif
n Non-blocking send and blocking receive

n if (myrank == 0) then
call MPI_ISend(…)
call MPI_Wait(…)

else if (myrank == 1) then
call MPI_Recv(….)

 endif

Unidirectional Communication

n Blocking send and non-blocking recv
if (myrank == 0) then

call MPI_Send(…..)

elseif (myrank == 1) then
call MPI_Irecv (…)
call MPI_Wait(…)

endif

n Non-blocking send and non-blocking recv
if (myrank == 0) then
call MPI_Isend (…)
call MPI_Wait (…)

elseif (myrank == 1) then
call MPI_Irecv (….)
call MPI_Wait(..)

endif

 • Need to be careful about deadlock when two processes exchange data with
each other

• Deadlock can occur due to incorrect order of send and recv or due to limited
size of the system buffer

sendbuf

recvbuf

Rank 0 Rank 1

recvbuf

sendbuf

Bidirectional Communication

Bidirectional Communication

n Case 1 : both processes call send first, then recv
 if (myrank == 0) then

call MPI_Send(….)
call MPI_Recv (…)

elseif (myrank == 1) then
call MPI_Send(….)
call MPI_Recv(….)

endif
n No deadlock as long as system buffer is larger than send buffer
n Deadlock if system buffer is smaller than send buf
n If you replace MPI_Send with MPI_Isend and MPI_Wait, it is still

the same
n Moral : there may be error in coding that only shows up for

larger problem size

Bidirectional Communication
n Case 2 : both processes call recv first, then send

if (myrank == 0) then
call MPI_Recv(….)
call MPI_Send (…)

elseif (myrank == 1) then
call MPI_Recv(….)
call MPI_Send(….)

endif
n The above will always lead to deadlock (even if you

replace MPI_Send with MPI_Isend and MPI_Wait)

Bidirectional Communication
n The following code can be safely executed

if (myrank == 0) then
call MPI_Irecv(….)
call MPI_Send (…)
call MPI_Wait(…)

elseif (myrank == 1) then
call MPI_Irecv(….)
call MPI_Send(….)
call MPI_Wait(….)

endif

Bidirectional Communication
n Case 3 : one process call send and recv in this order, and

the other calls in the opposite order
if (myrank == 0) then

call MPI_Send(….)
call MPI_Recv(…)

elseif (myrank == 1) then
call MPI_Recv(….)
call MPI_Send(….)

endif
n The above is always safe
n You can replace both send and recv on both processor

with Isend and Irecv

Where to get MPI library?

n MPICH (WINDOWS / UNICES)
n http://www-unix.mcs.anl.gov/mpi/mpich/

n Open MPI (UNICES)
n http://www.open-mpi.org/

Step By Step Installation of
MPICH on windows XP(1)

Step By Step Installation of
MPICH on windows XP(2)

Step By Step Installation of
MPICH on windows XP(3)

Step By Step Installation of
MPICH on windows XP(4)

Step By Step Installation of
MPICH on windows XP(5)

Step By Step Installation of
MPICH on windows XP(6)// mpi-test.cpp : Defines the entry point for the console application.

//

#include "stdafx.h"
#include <mpi.h>
#include <stdio.h>

int _tmain(int argc, _TCHAR* argv[])
{

int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of\n", rank, size);
MPI_Finalize();
return 0;

}

Step By Step Installation of
MPICH on windows XP(7)

Step By Step Installation of
MPICH on windows XP(8)

Step By Step Installation of
MPICH on windows XP(9)

Step By Step Installation of
MPICH on windows XP(10)

Step By Step Installation of
MPICH on windows XP(11)

Step By Step Installation of
MPICH on windows XP(12)

n Copy executable file to the bin directory

n Execute using:
mpiexec.exe –localonly <# of procs> exe_file_name.exe

Old Compile MSVS 6

Program with MPI and play with it

n MPICH-1.2.4 for windows 2000 has installed
in ECE226.

n On every machine, please refer to c:\Program
Files\MPICH\www\nt to find the HTML help
page on how to run and program in the
environment of Visual C++ 6.0

n Examples have been installed under
c:\Program Files\MPICH\SDK\Examples

How to run the example

1. Open the MSDEV workspace file found in
MPICH\SDK\Examples\nt\examples.dsw

2. Build the Debug target of the cpi project

3. Copy MPICH\SDK\Examples\nt\Debug\cpi.exe to a shared
directory. (use copy/paste to \\pearl\files\mpi directory)Open
a command prompt and change to the directory where you
placed cpi.exe

4. Execute mpirun.exe –np 4 cpi

5. In order to set path in DOS, in this case, use command: set
PATH=%PATH%;c:\Program Files\MPICH\mpd\bin

file:////srv/doc2pdf/var/in/%5C%5Cpearl%5Cfiles%5Cmpi

Create your own project

1. Open MS Developer Studio - Visual C+
+

2. Create a new project with whatever
name you want in whatever directory
you want. The easiest one is a Win32
console application with no files in it.

Create your own project

continue

3. Finish the new project wizard.
4. Go to Project->Settings or hit Alt F7 to bring

up the project settings dialog box.
5. Change the settings to use the multithreaded

libraries.
Change the settings for both Debug and
Release targets.

continue

continue

continue

6. Set the include path for all target configurations: This should be
c:\Program Files\MPICH\SDK\include

continue

7. Set the lib path for all target configurations: This should be
c:\Program Files\MPICH\SDK\lib

continue

8. Add the ws2_32.lib library to all configurations (This is the Microsoft
Winsock2 library. It's in your default library path).
Add mpich.lib to the release target and mpichd.lib to the debug
target.

continue

continue

9. Close the project settings dialog box.

10. Add your source files to the project

Useful MPI function to test your program

MPI_Get_processor_name(name, resultlen)
n name is a unique specifier for the actual node.

(string)
n resultlen is length of the result returned in

name(integer)
This routine returns the name of the processor on
which it was called at the moment of the call. The
number of characters actually written is returned in the
output argument resultlen.

How to use Microsoft HPC
2008 Cluster to run MPI

applications

ECE 677 Salim Hariri/University of
Arizona

	Slide 1
	Distributed Systems Design Framework (Cont)
	Brief overview
	Companion Material
	The Message-Passing Model	
	What is message passing?
	Communication Modes
	Synchronous Vs. Asynchronous
	Synchronous Vs. Asynchronous
(cont.)
	Blocking vs. Non-Blocking
	What is MPI?
	Why to use MPI?
	Is MPI large or small?
	Features that are NOT part of MPI
	Why MPI is simple?
	Skeleton MPI Program
	Initializing MPI
	Startup and endup
	A minimal MPI program(c)
	Commentary
	Notes on C
	Error handling
	Finding out about the environment
	Better Hello(c)
	Some basic concepts
	To use MPI in the ECE systems
	Slide 27
	Slide 28
	Compiling and running
	Slide 30
	Result
	MPI blocking send
	MPI blocking receive
	More comment on send and receive
	Review of Basic MPI routines
	Communication Primitives
	MPI basic send/receive
	Data Types
	MPI Data Types in C
	Why defining the data types during the send of a message?
	Broadcast and reduce
	Global Communications in MPI: Broadcast
	Global Communications in MPI: Broadcast
	Global Communications in MPI: Broadcast
	Global Communications in MPI: Reduction
	Global Communications in MPI: MPI_Reduce
	Global Communications in MPI: MPI_Reduce
	Example: PI in C - 1
	Example: PI in C - 2
	Point to Point Communications in MPI
	Point to Point Communications in MPI
	Point to Point Communications in MPI
	Slide 53
	MPI tags
	MPI_Barrier
	Overview of Some Advanced MPI Routines
	Group routines
	Group routines ...
	Communicator routines
	Collective communication
	Collective Data Movement
	More Collective Data Movement
	Collective Computation
	Timing
	MPI Trace Output
	MPI-2
	Designing MPI programs
	MPI
	MPI v.s. OpenMP
	OpenMP
	Slide 71
	Slide 72
	Unidirectional Communication
	Unidirectional Communication
	
	Bidirectional Communication
	Bidirectional Communication
	Bidirectional Communication
	Bidirectional Communication
	Where to get MPI library?
	Step By Step Installation of MPICH on windows XP(1)
	Step By Step Installation of MPICH on windows XP(2)
	Step By Step Installation of MPICH on windows XP(3)
	Step By Step Installation of MPICH on windows XP(4)
	Step By Step Installation of MPICH on windows XP(5)
	Step By Step Installation of MPICH on windows XP(6)
	Step By Step Installation of MPICH on windows XP(7)
	Step By Step Installation of MPICH on windows XP(8)
	Step By Step Installation of MPICH on windows XP(9)
	Step By Step Installation of MPICH on windows XP(10)
	Step By Step Installation of MPICH on windows XP(11)
	Step By Step Installation of MPICH on windows XP(12)
	Old Compile MSVS 6
	Program with MPI and play with it
	How to run the example
	Create your own project
	Create your own project
	continue
	continue
	continue
	continue
	continue
	continue
	continue
	continue
	Useful MPI function to test your program
	Slide 107

