ECE 677: Distributed Computing Systems

Salim Hariri

High Performance Distributed Computing Laboratory
University of Arizona

Tele: (520) 621-4378

Www.ece.arizona.edu/~hpdc
Fall 2010

Distributed Systems Design Framework
(Cont)

Distributed Computing Paradigms (DCP)

Computation Models Communication Models

: Shared Memor
Functional Parallel Data Parallel Message Passing y

Architecture Models System Level Services

Computer Networks Communication Protocols

ECE 677 Salim Hariri/University of

AviwAn

Brief overview

What: standard for a message passing library (C, C++
and Fortran) to be used for message-passing parallel
computing.

When: 92-94 MPI1; 95-97 MPI2

Size: MPI1: 127 calls; MPI2: ~150 calls.

= Many parallel programs can be written with 6 basic
functions.
= Functions are orthogonal.
= Support for many different communication paradigms.
= Support for different communication modes.

= QOptions offered via different function names, rather than
parameters.

Where:

= Parallel computers and clusters (distributed or shared
memory)

= NOWSs (Network of workstations, heterogeneous systems)
Find more: http://www.mcs.anl.gov/Projects/MPI

http://www.mcs.anl.gov/Projects/MPI

Companion Material

"= Online examples available at
http://www.mcs.anl.gov/mpi/tutorial

= ftp://ftp.mcs.anl.gov/mpi/mpiexmple.tar.gz
contains source code and run scripts that

allows you to evaluate your own MPI
implementaton

http://www.mcs.anl.gov/mpi/tutorial
ftp://ftp.mcs.anl.gov/mpi/mpiexmple.tar.gz

The Message-Passing Model

= A process is (traditionally) a program counter and
address space

= Processes may have multiple threads(program
counters and associated stacks) sharing a single
address space. MPI is for communication among
processes, which have separate address spaces.

= Interprocess communication consists of

= Synchronization/Asynchronization

= Movement of data from one process’s address space to
another’s

What is message passing?

= Data transfer.

= Requires cooperation of sender and
receiver

= Cooperation not always apparent in
code

Communication Modes

= Based on the type of send:

Synchronous: Completes once the
acknowledgement is received by the sender.

Buffered send: completes immediately,
unless if an error occurs.

Standard send: completes once the message
has been sent, which may or may not imply
that the message has arrived at its
destination.

Ready send: completes immediately, if the
receiver is ready for the message it will get
it, otherwise the message is dropped silently.

Synchronous Vs. Asynchronous

= A synchronous communication is not
complete until the message has been
received.

= An asynchronous communication
completes as soon as the message is on
the way.

Synchronous Vs. Asynchronous
(cont.)

O
L

= |

~a]

B
b

Blocking vs. Non-Blocking

= Blocking, means the program will not
continue until the communication is
completed.

= Non-Blocking, means the program will
continue, without waiting for the
communication to be completed.

What is MPI?

= A message-passing library specifications:
= Extended message-passing model
= Not a language or compiler specification
= Not a specific implementation or product

= For parallel computers, clusters, and heterogeneous networks.

- Con;lmunication modes: standard, synchronous, buffered, and
ready.

= Designed to permit the development of parallel software libraries.

= Designed to provide access to advanced parallel hardware for
= End users
= Library writers
= Tool developers

Why to use MPI?

= MPI provides a powerful, efficient, and portable
way to express parallel programs.

= MPI was explicitly designed to enable libraries
which may eliminate the need for many users to
learn (much of) MPIL.

Is MPI large or small?

= MPI is large(125 functions)

= MPI’'s extensive functionality requires many functions.
* Number of functions not necessarily a measure of
complexity.

= MPI is small(6 functions)

= Many parallel programs can be written with just 6 basic
functions.

= MPI is just right
* One can access flexibility when it is required.

* One need not master all parts of MPI to use it.
= MPI is whatever size you like

Features that are NOT part of
MPI

" Process Management
= Remote memory transfer

= Threads

= Virtual shared memory

Why MPI is simple?

= Many parallel programs can be

written using just these six
functions, only two of which are
non-trivial;

= MPL_INIT

= MPI_FINALIZE

= MPI_COMM_SIZE

= MPI_COMM_RANK

= MPI_SEND
" MPI_RECV

Skeleton MPI Program

#include <mpi.h>

main(int argc, char** argv) {
MPI Init(&argc, &argv);

/* main part of the program */
Use MPI function call depend on your data
partition and parallization architecture
MPI Finalize();

Initializing MPI

" The first MPI routine called in any MPI
program must be the initialization
routine MPI_INIT

= MPI_INIT is called once by every
process, before any other MPI routines

int mpi Init(int *argc, char **argv);

Startup and endup

= int MPI_Init(int *argc, char ***argv)
= The first MPI call in any MPI process
= Establishes MPI environment

= One and only one call to MPI_INIT per
process

" int MPI_Finalize(void)
= Exiting from MPI
" Cleans up state of MPI
" The last call of an MPI process

A minimal MPI program(c)

#include “mpi.h”

#include <stdio.h>

int main(int argc, char *argvl[])

{
MPI Init (&argc, é&argv);
printf (“Hello, world!\n”);
MPI Finalize();

Return O0;

Commentary

" #include “"mpi.h” provides basic MPI
definitions and types.

= MPI_Init starts MPI
= MPI_Finalize exits MPI

= Note that all non-MPI routines are local;
thus printf urn on each process

Note

" InC
=m
M
=M

s on C

Di.h must be included by using #include
Di.h
P functions return error codes or

M

PI_SUCCESS

Error handling

= By default, an error causes all processes to
abort.

= The user can have his/her own error handling
routines.

= Some custom error handlers are available for
downloading from the net.

Finding out about the environment

= Two important questions that arise early in a

parallel program are:
-How many processes are participating in this computation?

-Which one am I?

BMPI provides functions to answer these

questions:
-MPI_Comm_size reports the number of processes.

-MPI_Comm_rank reports the rank, a number between 0 and size-
1, identifying the calling process.

Better Hello(c)

#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv[])

{

int rank, size;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of\n", rank, size);
MPI_Finalize();

return 0;

}

Some basic concepts

Processes can be collected into groups.

Each message is sent in a context, and must be
received in the same context.

A group and context together form a communicator.

A process is identified by its rank in the group
associated with a communicator.

There is a default communicator whose group
contains all initial processes, called
MPI_COMM_WORLD.

To use MPI in the ECE systems

= Migrate your ECE account to ENGR
domain using the online web tool at

https://account.engr.arizona.edu.

ECE 677 Salim Hariri/University of

AviwAn

https://account.engr.arizona.edu/

ECE DRACO Cluster

The hostname of the MPI cluster is draco.ece.arizona.edu. The individual
hosthames of the cluster systems are as follows:
ursa
alcaid
perseus
altair
cetus
sirius
centauri
pegasus

.rhosts File

In order for MPI to work, users will need the following in the ".rhosts" file in
their home directory:
ursa.ece.arizona.edu username
alcaid.ece.arizona.edu username
perseus.ece.arizona.edu username
altair.ece.arizona.edu username
cetus.ece.arizona.edu username
sirius.ece.arizona.edu username
centauri.ece.arizona.edu username
pegasus.ece.arizona.edu username

Compiling and running

= Head file
= Fortran -- mpif.h
= C-- mpi.h (*we use C in this presentation)
= Compile:
= implementation dependent. Typically requires
specification of header file directory and MPI library.
* mpiCC —o destination-filename source-file.c
= mpiCC filename

" Run:
" mpirun -np <# proc> <executable>

#i ncl ude <stdi o. h>

#i ncl ude <string. h> /1 this allows us to mani pul ate text strings
#i ncl ude "npi . h" /1l this adds the MPI header files to the program
int main(int argc, char* argv[]) {

int my_rank; /'l process rank

int p; /'l nunber of processes

i nt source; /'l rank of sender

i nt dest; /'l rank of receiving process

int tag = O; /1l tag for nessages

char nessage[100]; // storage for nessage
MPI _Status status; // stores status for MPI_Recv statenents

[/l starts up MPI

MPI I nit(&argc, &argv);

/1l finds out rank of each process

MPI _Comm r ank(MPI _COVW WORLD, &my_rank);
/1 finds out nunber of processes

MPI _Cormm si ze(MPI _COVM WORLD, &p);

if (ny_rank!=0) {
sprintf(nessage, "Greetings fromprocess %!", ny_rank);
dest = 0; // sets destination for MPI _Send to process O
/'l sends the string to process 0O
MPI _Send(nessage, strlen(nmessage)+1l, MPI _CHAR dest, tag, MPI_COVM WORLD)
} else {
for(source = 1; source < p; source++){
/'l receives greeting fromeach process
MPlI Recv(nessage, 100, MPI _CHAR, source, tag, MPI_COVW WORLD, &status);
printf("%\n", nmessage); // prints out greeting to screen

}
}
MPI _Finalize(); // shuts down MP
return O;

Result

= mpicc hello.c

" mpirun -np 6 a.out
Greetings from process 1!

Greetings from process 2!
Greetings from process 3!

Greetings from process 4!

Greetings from process 5!

MPI blocking send

MPI SEND(void *start, int
count,MPI DATATYPE datatype, 1int dest, 1nt
tag, MPI COMM comm)

®= The message buffer is described by
(start, count, datatype).

= dest is the rank of the target process in
the defined communicator.

" tag is the message identification number.

MPI blocking receive

MPI RECV (void *start, 1nt count,

MPI DATATYPE datatype, 1int source, 1int tag,
MPI COMM comm, MPI STATUS *status)

Source is the rank of the sender in the communicator.

The receiver can specify a wildcard value for souce (MPI_ANY_SOURCE) and/or a
wildcard value for tag (MPI_ANY_TAG), indicating that any source and/or tag are
acceptable

Status is used for exrtra information about the received message if a wildcard
receive mode is used.

If the count of the message received is less than or equal to that described by
the MPI receive command, then the message is successfully received. Else it is
considered as a buffer overflow error.

More comment on send and receive

= A receive operation may accept
messages from an arbitrary sender, but
a send operation must specify a unique
receiver.

= Source equals destination is allowed,
that is, a process can send a message

to itself.

Review of Basic MPI routines

= MPI is used to create parallel programs based on
message passing

= Usually the same program is run on multiple
processors

= The 6 basic calls in MPI are:

MPI_INIT(ierr)
MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

MPI_Send(buffer, count,MPI_INTEGER,destination, tag,
MPI_COMM_WORLD, ierr)

MPI_Recv(buffer, count, MPI_INTEGER,source,tag,
MPI_COMM_WORLD, status,ierr)

MPI_FINALIZE(ierr)

Communication Primitives

= Communications on distributed memory computers:
= Point to Point
= One to All Broadcast
= All to All Broadcast
= One to All Personalized
= All to All Personalized
= Shifts
= Collective Computation

ECE 677 Salim Hariri/University of

AviwAnn

MPI basic send/receive

= We need to fill in the details in

Process O
Send(data)

Process 1

> Receive(data

)

B Things that need specifying:
JHow will “data” be described?
HHow will processes be identified?
HHow will the receiver recognize/screen messages?
BH\What will it mean for these operation to complete?

Data Types

*= The data message which is sent or received is
described by a triple (address, count, datatype).
= The following data types are supported by MPI.:

" Predefined data types that are corresponding to
data types from the programming language.

= Arrays.

= Sub blocks of a matrix

= User defined data structure.

= A set of predefined data types

MPI Data Types

in C

C MPI Types
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int

MPI_UNSIGNED_CHAR

unsigned char

MPI_UNSIGNED_SHORI

unsigned short int

MPI_UNSIGNED

unsigned int

MPI_UNSIGNED LONG

unsigned long int

MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE -

MPI_PACKED

Why defining the data types during
the send of a message?

Because communications take place
between heterogeneous machines. Which may
have different data representation and length
in the memory.

Broadcast and reduce

= MPI_Bcast(buffer, count, datatype, root,
comm)

= Broadcast the message of length count in buffer
from the process root to all other processes in the
group. All processes must call with same
arguments.

= MPI_Reduce(sbuf, rbuf, count, stype, op,
root, comm)

= Apply the reduction function op to the data of
each process in the group (type stype in sbuf) and
store the result in rbuf on the root process. op can
be a pre-defined function, or defined by the user.

Global Communications in MPI: Broadcast

= All nodes call MPI Bcast

"= One node (root) sends a message all
others receive the message
= C

- MPI_Bcast(&buffer, count, datatype, root, communicator);

" Fortran

- call MPI_Bcast(buffer, count, datatype, root, communicator,
ierr)

= Root is node that sends the message

Global Communications in
MPI: Broadcast

" broadcast.c is a parallel program to
broadcast data using MPI_Bcast

= Initialize MPI
= Have processor 0 broadcast an integer

= Have all processors print the data
= Quit MPI

Global Communications in MPI: Broadcast

/**

This is a simple broadcast program in MPI
**/
#include <stdio.h>
#include "mpi.h"
int main(argc,argv)
int argc;
char *argv[];
{
int i,myid, numprocs;
int source,count;
int buffer[4];
MPI_Status status;
MPI_Request request;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
source=0;
count=4;
if(myid == source){

for(i=0;i<count;i++)

buffer[i]=i;

b
MPI_Bcast(buffer,count,MPI_INT,source,MPI_COMM_WORLD);
for(i=0;i<count;i++)

printf("%d ", buffer[i]);

R I o 4 | A W | b N

Global Communications in MPI:
Reduction

= Used to combine partial results from all
Processors

= Result returned to root processor

= Several types of operations available. For
example summation, maximum etc

= Works on single elements and arrays

Global Communications in MPI:

MPI Reduce
= C

* int MPI_Reduce(&sendbuf, &recvbuf, count,
datatype, operation,root, communicator)

" Fortran

= call MPI_Reduce(sendbuf, recvbuf, count,
datatype, operation,root, communicator,
ierr)

= Parameters
= |Like MPI_Bcast, a root MPI process is specified.
= Qperation is mathematical operation

Global Communications in MPI:

MPI_Reduce
MPI_MAX Maximum
MPI_MIN Minimum
MPI_PROD Product
MPI_SUM Sum
MPI_LAND Logical and
MPI_LOR Logical or

MPI_LXOR Logical exclusive or
MPI_BAND Bitwise and

MPI_BOR Bitwise or

MPI_BXOR Bitwise exclusive or
MPI_MAXLOC Maximum value and location
MPI_MINLOC Minimum value and location

Example: PIIinC-1

#include "mpi.h"
#include <math.h>
int main(int argc, char *argvl[])

{

int done = 0, n, myid, numprocs, 1, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;

MPI Init (&argc, &argv);

MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank (MPI COMM WORLD, &myid) ;

while (!done) {
if (myid == 0) {
printf ("Enter the number of intervals: (0 quits) ");

scanf ("%d", &n) ;

}
MPI Bcast(&n, 1, MPI INT, 0, MPI COMM WORLD) ;

1f (n == 0) break;

Example: PIinC-2

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; 1 <= n; i += numprocs) {
X = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);
}
mypli = h * sum;
MPI Reduce (&¢mypi, &pi, 1, MPI DOUBLE, MPI SUM, O,
MPI COMM WORLD) ;
if (myid == 0)
printf ("pi is approximately %.16f, Error is .l6f\n",
pi, fabs(pi - PIZ25DT));
}
MPI Finalize();

return 0;

Point to Point Communications in MPI

= Basic operations of Point to Point (PtoP)
communication in MPI

= Several steps are involved in the PtoP
communication

= Sending process
= data is copied to the user buffer by the user
= User calls one of the MPI send routines

= System copies the data from the user buffer to the
system buffer

= System sends the data from the system buffer to the
destination processor

Point to Point Communications in MPI

= Receiving process
= User calls one of the MPI receive subroutines

= System receives the data from the source
process, and copies it to the system buffer

= System copies the data from the system
buffer to the user buffer

= User uses the data in the user buffer

Point to Point Communications in MPI

Process 0 : User mode Kernel made

sendbuf
// /] =

- sysbuf

Call send routine

Copying data from sendbuf to
systembuf

N dbuf can b T
ow sendbuf can be reused Send data from sysbuf to

dest
data
Process 1 - User mode Kernel mode
Call receive routine receive data from
src to <
systembuf
Copying data from sysbuf
Now recvbuf contains to recvbuf ;
valid data — 7
recvbuf [/ // Je—

= More information of point to point
communication are in the Appendixes

ECE 677 Salim Hariri/University of

AviwAnn

MPI tags

= Message are sent with an accompanying
user-defined integer tag, to assist the
receiving process in identifying the
message.

= Message can be screened at the
receiving end by specifying a specific
tag, or not screened by specifying
MPI_ANY_TAG as the tag in a receive.

= Some non-MPI message-passing systems
have called tags"message types”. MPI
calls them tags to avoid confusion with
datatype.

MPI Barrier

= Blocks the caller until all members in the
communicator have called it.

" Used as a synchronization tool.
= C

- MPI_Barrier(comm)

=" Fortran
- Call MPI_BARRIER(COMM, IERROR)

" Parameter

= Comm: communicator (often
MPI_COMM_WORLD)

Overview of Some Advanced MPI Routines

Can split MPI communicators (MPI_Comm_split)
Probe incoming messages (MPI_Probe)

Asynchronous communication (MPI_Isend,
MPI_Irecv, MPI_Wait, MPI_Test etc)

Scatter different data to different processors
(MPI_Scatter), Gather (MPI_Gather)

MPI_AIlIReduce, MPI_Alltoall
Derived data types (MPI_TYPE_STRUCT etc)
MPI I/O

Group routines

MPI_Group_size returns number of processes in group
MPI_Group_rank returns rank of calling process in group

MPI_Group_compare compares group members and
group order

MPI_Group_translate_ranks translates ranks of
processes in one group to those in another group

MPI_Comm_group returns the group associated with a
communicator

MPI_Group_union creates a group by combining two
groups

MPI_Group_intersection creates a group from the
intersection of two groups

Group routines ...

MPI_Group_difference creates a group from the
difference between two groups

MPI_Group_incl creates a group from listed
members of an existing group

MPI_Group_excl creates a group excluding listed
members of an existing group

MPI_Group_range_incl creates a group according
to first rank, stride, last rank

MPI_Group_range_excl creates a group by
deleting according to first rank, stride, last rank

MPI_Group_free marks a group for deallocation

Communicator routines

= MPI_Comm_size returns number of processes in communicator's
group

= MPI_Comm_rank returns rank of calling process in
communicator's group

= MPI_Comm_compare compares two communicators
= MPI_Comm_dup duplicates a communicator
= MPI_Comm_create creates a new communicator for a group

= MPI_Comm_split splits a communicator into multiple, non-
overlapping communicators

* MPI_Comm_free marks a communicator for deallocation

Collective communication

= MPI_Allgather All processes gather messages

= MPI_Allreduce Reduce to all processes

= MPI_Alltoall All processes gather distinct messages
= MPI_Bcast Broadcast a message

= MPI_Gather Gather a message to root

= MPI_Reduce Global reduce operation

= MPI_ ReduceScatter Reduce and scatter results

= MPI_Scatter Scatter a message from root

= MPI_Scan Global prefix reduction

Collective Data Movement

PO
P1

P2
P3

PO
P1

P2
P3

Broadcast |

Scatter

> ||| ||

. Gather

O O o >

More Collective Data

Movement

PO A

p1 B Allgather |
p2 (C

p3 D

PO A0A1A2A3

P1 B0B1B2B3 Alltoall

P2 cocic2c3

P3 DOD1D2D3

> ||| > P
W | O
OO0 0
O 0|0 O

AQ

BO

CO

DO

Al

Bl

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

Collective Computation

PO
P1

P2
P3

PO
P1

P2
P3

Reduce

ABCD

O O @ >

Scan

AB

OO0 w >

ABC

ABCD

Timing

= MPI Wtime() returns the wall-clock

time.
double start, finish, time;

MPI_Barrier(MPI_COMM_WORLD);
start = MPI_Wtime();

MPI_Barrier(MPI_COMM_WORLD);
finish = MPI_Wtime();

time = finish - start;

MPI Trace Output

MPI Routi ne #cal | s avg. bytes ti me(sec)
MPI _Comm si ze 1 0.0 0. 000
MPI _Comm r ank 1 0.0 0. 000
MPI _Send 500 1024.0 0.001
MPl _Recv 500 1024.0 0. 008
MPI _Barrier 500 0.0 0.013
total comunication tine = 0.022 seconds.
total el apsed tine = 3.510 seconds.
user cpu tinme = 3. 500 seconds.
systemtine = 0. 010 seconds.
maxi mum nmenory size = 15856 KByt es.

Message size distributions:

MPI _Send #cal | s avg. bytes ti me(sec)
500 1024.0 0. 001
MPI _Recv #cal | s avg. bytes ti me(sec)
500 1024.0 0. 008

Call Graph Section:

conmuni cation time = 0.022 sec, parent = poisson
MPI Routi ne #cal |l s ti me(sec)

MPI-2

= MPI-2 new topics:

" process creation and management,
including client/server routines

" one-sided communications (put/get, active
messages)

= extended collective operations
= external interfaces
= I/O

Designing MPI programs

= Partitioning The |
= Before tackling MPI | ronem
= Communication o .
= Many point to collective @:‘? k===
operations
" Agglomeration commnicaion N (55
" Needed to produce MPI @1@
g" o)

Processes Combined Tasks
= Mapping 2 2 Rued
= Handled by MPI Final Program

= Pros:

MPI

Very portable
Requires no special compiler

Requires no special hardware but
can make use of high
performance hardware

Very flexible -- can handle just
about any model of parallelism

No shared data! (You don't have
to worry about processes
"treading on each other's data" by
mistake.)

Can download free libraries for
your Linux PC!

Forces you to do things the "right
way" in terms of decomposing
your problem.

> (Cons:

* All-or-nothing parallelism
(difficult to incrementally
parallelize existing serial codes)

* No shared data! Requires
distributed data structures

* Could be thought of assembler
for parallel computing -- you
generally have to write more
code

* Partitioning operations on
distributed arrays can be messy.

MPI v.s. OpenMP

"= Message passing v.s. shared data
" Processes V.S. Threads
= MPI has no work sharing structure.

OpenMP

= Pros:

= Incremental parallelism -- can parallelize existing serial codes
one bit at a time

= Quite simple set of directives
= Shared data!
= Partitioning operations on arrays is very simple.

= Cons:
= Requires proprietary compilers
= Requires shared memory multiprocessors
= Shared data!

= Having to think about what data is shared and what data is
private

= Cannot handle models like master/slave work allocation (yet)
= Generally not as scalable (more synchronization points)

= Not well-suited for non-trivial data structures like linked lists,
trees etc

" Homework #1 (programming) will be
posted.

= Due: September 14 before the class

ECE 677 Salim Hariri/University of

AviwAnn

Appendix

ECE 677 Salim Hariri/University of

AviwAn

Unidirectional Communication

= Blocking send and blocking receive
. if (myrank == 0) then
call MPI_Send(...)
elseif (myrank == 1) then
call MPI_Recv(....)
endif

= Non-blocking send and blocking receive
. if (myrank == 0) then
call MPI_ISend(...)
call MPI_Wait(...)
else if (myrank == 1) then
call MPI_Recv(....)
endif

Unidirectional Communication

= Blocking send and non-blocking recv
if (myrank == 0) then
call MPI_Send(.....)

elseif (myrank == 1) then
call MPI_Irecv (...)
call MPI_Wait(...)

endif

"= Non-blocking send and non-blocking recv

if (myrank == 0) then
call MPI_Isend (...)
call MPI_Wait (...)
elseif (myrank == 1) then
call MPI_Irecv (....)
call MPI_Wait(..)
endif

Bidirectional Communication

Need to be careful about deadlock when two processes exchange data with
each other

Deadlock can occur due to incorrect order of send and recv or due to limited
size of the system buffer

Rank 0 Rank 1
dbuf
Sehabl recvbuf
oO|lo|o |* O | o |O
recvbuf sendbuf

Bidirectional Communication

= (Case 1 : both processes call send first, then recv
if (myrank == 0) then
call MPI_Send(....)
call MPI_Recv (...)
elseif (myrank == 1) then
call MPI_Send(....)
call MPI_Recv(....)
endif

= No deadlock as long as system buffer is larger than send buffer
= Deadlock if system buffer is smaller than send buf

= If you replace MPI_Send with MPI_Isend and MPI_Wait, it is still
the same

= Moral : there may be error in coding that only shows up for
larger problem size

Bidirectional Communication

= (Case 2 : both processes call recv first, then send
if (myrank == 0) then
call MPI_Recv(....)
call MPI_Send (...)
elseif (myrank == 1) then
call MPI_Recv(....)
call MPI_Send(....)
endif

= The above will always lead to deadlock (even if you
replace MPI_Send with MPI_Isend and MPI_Wait)

Bidirectional Communication

= The following code can be safely executed

if (myrank == 0) then

call MPI_Irecv(....)

call MPI_Send (...)

call MPI_Wait(...)
elseif (myrank == 1) then

call MPI_Irecv(....)

call MPI_Send(....)

call MPI_Wait(....)
endif

Bidirectional Communication

= Case 3 : one process call send and recv in this order, and
the other calls in the opposite order

if (myrank == 0) then
call MPI_Send(....)
call MPI_Recv(...)

elseif (myrank == 1) then
call MPI_Recv(....)
call MPI_Send(....)

endif

= The above is always safe

= You can replace both send and recv on both processor
with Isend and Irecv

Where to get MPI library?

= MPICH (WINDOWS / UNICES)

= Open MPI (UNICES)

Step By Step Installation of
MPICH on windows XP(1)

mr MPICHZ -

Process Manager setu ."ﬁ\ RGONNE

NATIONAL

LABORATORY

The zmpd process manager will be installed on thiz spstem. [t reguires administrator privileges to
iztall 2o if pau are nat in the adminiztratar's group you should cancel the installation now. Smpd wil
be installed az a zervice uzed to launch MPI proceszes. Autharized access to the smpd service iz
regulated by a zecret word entered here. The zame paszzphraze must be uzed on all spstems.

Pazzphraze:;

Cancel] ’ < Back] l Hest > l

Step By Step Installation of
MPI on windows XP(2)

Select Installation |

LnHUHhT{JFi"f’

The inztaller will inztall MPICHZ to the following folder.

Toinztall in thiz folder, click "Mext”. Taoinzstall to a different folder, enter it below or click "Browse"',

Folder:
C:%Program FileshhPICH 24 [Browse...]

| DiskCost. |

Inztall MPICHZ for pourzelf, ar for anyone who uges this computer;

) Everyone
&) Just me

Cancel

Step By Step Installation of
MPICH on windows XP(3)

= MPICHZ

File Edit Wiew Fawarites

Back + [.) gearch || Faolders -
i

Help

Address |23 C:\Program FilesiMPICHZ

File and Folder Tasks

a Make a new Folder

@ Publish this Folder to
the Web

E? Share this Folder

Other Places

| Program Files

E:j My Docurments
| shared Documents
a My Compuker

&J My Network Places

@I

README winbin, rtf
Rich Text Faormat
21 KB

T s
=
l:_j examples

T
B jurnpshok

COPYRIGHT . rtf
Rich Texk Format
SkE

setup.jpg
496« 70
Irfantiew JPE File

|||.1_-_

36.6 KB ' My Computer

Step By Step Installation of
MPICH on windows XP(4)

#o Microsoft Development Environment [[design]

File | Edit Miew Debug Tools Window Help

| ew r|-5 Project... Ctrl+Shift+h ||

Open F|7E] Fle... Chrl+M
"L:g Blank Solution. ..

Add Project »

Cpen Solukion, ..

Close Solukion

Save Solukionl Chrl4+5

Save Solukionl As. ..

Save Al Crrl+Shift+5

= & o . s,

Recent Files »

Recent Projects F

Exit

Step By Step Installation of

MP on windows XP(5)

Project Tvpes: Templates:
=-[L1 wisual C++ Projects vy
i [g
O an Win32 Console Win32 Project
i Project
£ wWin3z
[ceneral
[L3] =etup and Deplovment Projects
+-[27] Other Projects
(231 wisual studio Solutions

& Console application bvpe of Win32 project.

Mame: | mpi-test]
Locakion: | k1 1My Documentstisual Studio Projecks ﬂ Browse, ., |
" add ko Solution (* Close Solukion

Project will be created at K:\My Documentstisual Studio Projects\mpi-test,

FMore | (04 | Zancel | Help |

Step By Step Installation of
/ o CAmes @O NG E BB Kb e 6n)

#include "stdafx.h"
#include <mpi.h>
#include <stdio.h>

int _tmain(int argc, _TCHAR* argv[])

{
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of\n", rank, size);
MPI_Finalize();
return O;

Step By Step Installation of
MPICH on windows XP(7)

desten| - mpi-test.cpp

File Edit iew | Project | Build Debug Tools window Help

vt - @ 1Y Adddass.., b Det
L—=l l@& G as “% Add Resouree..,
S T — 2| Add Mews Tkem, .. Ctr4-Shift+a
i Add Existing Item... Shift+AlE+A
lga Solution ‘mpi-tes) MNew Folder LSt epp
= g;t:st Add weh Reference. .,
eferen
= Set a5 StartUp Projeck
B%UF'EF atte e fatdafx.t
@ :ﬂpf mpi-test Properties. .. <mpi.h>
r ™

S 3 Header Files Finclude <stdio.h:

skdaf:x.h

Step By Step Installation of

gl_ Configuration: I.ﬁ.ctive(Debug} ;I Platform: IA:tive(WinSZ} ;I Configurakion Manager. .. |
2| |3 Configuration Prupertie[ﬁ] additional Include Directories I |
:E': General Resolve #using References
;.: Cebugging Debug Information Format Program Database for Edit & Continue {/21)
e; 5 CJCH+ Suppress Skarkup Banner Yes {fnologa)
Wharning Leel Level 3 (W3}

Cptimization Dietect 64-bit Partability Issues Yes {/Wp64)

Preprocessor Treak Warnings As Errors Mo

Code Generatio

Language 5

Precompiled He. ~

Oukbpuk Files Additional Tnclinde’Directories

Brovese Informe

Advanced

Command Line Z:\Pragram Files\MPICH2 include
= (23 Linker
T [Z1 Browwse Infarmation
_ 1 Buid EvenFs ~ | | Additional In

(3 custom Buid Step Specifies one n delimited
_ (1 web Deployment | |i5I,:||:EiFIm,:,rE thaﬂ Inherited walues:
gl w] (3]

=]
h | tee |
1 Samples
_Samples
i0 Samnples ¥ Inherit From project defaults Mlackos ==
started —_—
1d Accessing XML Wweb Service ok | Cancel | Help
1the Developrment Environmel || 4

I [[| Y Sy M

%

Step By Step Installation of

%L Configuration: I.ﬁ.ctive(Debug} ;I PlatFarm: Iﬁ.ctive(WinSZ} ;I Configuration Managet. .. |
2| |3 Configuration Properties Output File ${0utDir)/mpi-test.exe
:Ec Gaeneral Show Progress Mot Sek
;.: Debugging Yersian
ej [Cic++ Enable Incremental Linking Yes {/INCREMENTAL)
L) .
{3 Linker Suppress Startup Banner Mo
‘3’ Ignore Innport Library Mo
Input] Register Cukpuk Mo
Debugging I Additional Library Directories I
Svyskem
Optimization Additional’ Cibrary Directories
Embedded IDL
Advanced

Command Line
[Z7 Browse Information

Z:\Program FilesiMPTCH24ib

[Z7 Build Events I_]
L4 1]]

(23 Custam Build Step
[C3 Web Deplayment

Additional Library Dir

Specifies one or more ad| Inherited values: b
] semi-colon delimited lisk i

o |m'

o |

2 Samples

samples I¥ Inherit from project defaulks Macros ==
i0 Sarmples |
started

1] Accessing ¥ML Web Service
1 the Developrent Environmel | 4 a

Ik Cancel | Help

Step By Step Installation of

by : _

\/M/ 4

N\

X
Configuration: I.ﬁ.ctive{Dehug} ;I PlatForm: Iﬂ.ctive{WinSE} ;I Configuration Manaaget. .. |
| |'=3 Configuration Properties Additional Dependencies | |
] General Ignore All Default Libraries Mo
] Debugaging Ignore Specific Library
] [0 Oic++ Madule Definition File
L= .
{3 Linker Add Module to Assembly
Genetal Embed Managed Resource Fils
-!mml:l Force Symbol References

Debugging

Systemn Delay Loaded Dils | Additonal’ Dependencies

Opkimization m

i

Embedded IDL mpi. b

Advanced

Command Line

[Z3 Browse Infarmation
z (23 Build Events
] (23 Custarn Build Skep
Web Deplovment Inherited walues:
_ 4 Py Additional Dependencies ;
Specifies additional items ko add to b kernelSE_.Ilb il
| specific., userdz,lib
gdizz.lib

) winspool, lib
7 comdlg32.lib

Ok

Samples
samples

1 Samples
-arted

[. TR TR

[Inherit From project defaulks

O, Cancel |

™

Macros > =

Help

|

Step By Step Installation of

mpi-test Property Pages E

Configuration: |.ﬁ.ctive{Debug} j Flakfarm: |Active('u'-.-'in32]| j Configuration Managet. .. |

=3 Configuratian F‘ru:upertie[i] &l Options:

g:gz;z:ing /1 "Ct\Program Files\MPICHZ|include” /D "WIN32" {D "_DEBUG" /D "_CONSOLE" {D
_MBCS" jGm JEHsc JRTCL ML fyu"skdafx, h" JFp"Debug/mpi-test, pch” jFo"Debugf
3 CiC++ [Fd"Debugvc?0,pdb" W3 fnologe [c W4 (21 TR
General
Qpkimization
Preprocessor
Code Generakio
Language
Precompiled He.
Cukput Files
Browse Informe
Advanced
| % Command Line additional Options:
[Z Linker
(23 Browse Information
(21 Build Events i
(23 Cuskom Build Step
[C3 Wweb Deployment [*

< I | [

CMPICH IGMNORE

k. | Cancel Help

Step By Step Installation of
MPICH on windows XP(12)

= Copy executable file to the bin directory

= Execute using:

mpilexec.exe —localonly <# of procs> exe file name.exe

Old Compile MSVS 6

Program with MPI and play with it

= MPICH-1.2.4 for windows 2000 has installed
in ECE226.

= On every machine, please refer to c:\Program
Files\MPICH\www\nt to find the HTML help
page on how to run and program in the
environment of Visual C++ 6.0

= Examples have been installed under
c:\Program Files\MPICH\SDK\Examples

How to run the example

1. Open the MSDEV workspace file found in
MPICH\SDK\Examples\nt\examples.dsw

2. Build the Debug target of the cpi project

3, Copy MPICH\SDK\Examples\nt\Debug\cpi.exe to a shared
directory. (use copy/paste to \\pearl\files\mpi directory)Open
a command prompt and change to the directory where you
placed cpi.exe

a, Execute mpirun.exe —np 4 cpi

5. In order to set path in DOS, in this case, use command: set
PATH=%PATH%;c:\Program Files\MPICH\mpd\bin

file:////srv/doc2pdf/var/in/%5C%5Cpearl%5Cfiles%5Cmpi

Create your own project

1.

2.

Open MS Developer Studio - Visual C+
|

Create a new project with whatever
name you want in whatever directory
you want. The easiest one is a Win32
console application with no files in it.

Create your own project

Filez Projects “Workspaces Other Documents
@Q{: Mew Database Wizard

1 Utility Project

A |'\Wind2 Application
' zale Application

%] Win32 Dynamic-Link Librk

%] 'wWin32 Static Library

21

Project name:

Location:
II::"-.-'l'-.rgl:unne M ational Lab\MPIC J

% Create new workspace
 Add to curent workspace
[T Dependency of:

E =

Blatforms:
[wmz

K Cancel

continue

3. Finish the new project wizard.

4. Go to Project->Settings or hit Alt F/ to bring
up the project settings dialog box.

5. Change the settings to use the multithreaded
libraries.
Change the settings for both Debug and
Release targets.

continue

Project Settings : x|
Settings ;‘ Wwin32 Debug j Debug Fortran C/C++ Link, | Hesnurcaz EE
-- |::|:|i . = rer -
w B8 i BEICLLIR T o e (G eneration Feset |
" mantclelt Frocessor: U'ze run:time libran:
-+ - e e
MpRi=s Blend * j [| D ebug Multithreaded
=8 netpipe S
+-[E= test . . L
g Sysies Calling convention: Struct mernber alignment:
_cdecl” = [eBytes =

Froject Ophions:

W3 AGm AGH A2 A0d A ﬂ
SN EeREET D WANGEY DY DEBUGT AD
"_CONSOLE" /0 _MBCE" /Fp''Debugdcpipoh’ £ j

k. Cancel

continue

Project Settings

Settings Faf® |'wWin32 Feleaze

-- |::|:|i
=28 fpi

-- mandel
-- mpptest
-- netpipe
-- syztest

Debug | Faortran

C/AC++

Lategory: IEI:u:IE Generation j Beset |

Proceszzor;

U

Blend *

Calling convention:

5
M

[

Struct member glinment:

__cdecl®

Froject Options:

j IEEytes" j

N3

34GH 02 A4 A Ainclude" /D ﬂ
MOEBUG" /D "_COMSOLE" /D
" MBCS" /Fp"Releasedcpipch & fFo''Releazes j

K | Cancel

continue

6. Set the include path for all target configurations: This should be
c:\Proaram Files\MPICH\SDK\include

Project Settings ilil
Lik | (T3]

ERED Cri _
=28 fpi Category: IF'reprn:u::essnr j Reset |
= E8 mandel

Freproceszor definitions:
B
.. :;ppt,szt [w/IN32,_COMSOLE,_MBCS

=B systest Undefined symbols: ™ Undefine all spmbols

=B hditional include diren:Tn:?I'é?!-..h
< | Ninchude M

™ lgnore standard jnclude paths

Settings Fog™ | E i General | Debug | Fortan CAC++

Common Options;

dholago a3 AGe AN include” A0 wINEZ /D ;I
" COMSOLE" /D " _MBLCS" A AFD e

k. Cancel

continue

/. Set the lib path for all target configurations: This should be
c:\Program Files\MPICH\SDK\lib

Project Settings e ﬂﬁl

Settings ‘E'.,Il Confiqurations _ Debug | Fortran | C/C++ Link | Hesuurcaz EE

-- cpl
== |= Category: IInput j Beset |

" mandel Object/libram modules:

-- mpptest - e - -
__ netpipe IkemelSE.Ilb uzerd? lib gdid2 b winzpool ib comdlg32 lib ad
" aypztest lgrare librares: [lgnore all default braries

Force spmbol references:

< I

l..‘u..'\.."xlil:u E v,

kemel3Z lib userd2 ib gdi3Z lib winzpool ib comdlg32 i -
advapidZ lib zhell32 b ole32. b oleaut32 lib uuid.lib
odbz32 ik odbocp32 lib we2 32 b fhologo ;I

|] I Cancel |

continue

8. Add the ws2_32.lib library to all configurations (This is the Microsoft

Winsock2 library. It's in your default library path).

Add mpich.lib to the release target and mpichd.lib to the debug

target.

Project Settings 7 |

E

M|
-8 i
-- mandel
-- mpphest
-- netpipe
-- spshest

Diebug | Fartran | C/T++ Lk | Fhasc'un:alI EE

j Fieset |

Categary: |General

Cutput fle name:

IDebug.-’cpi.exe

Objectdlibramy modules:

L4 |W32_32.|i|:| pichd lib E}rné@.lib uzerd2 lib gdi32 b winsp

¥ Gererate debuginfe [Ignore all default libraries

¥ Link incrementally [Generate mapfils

[" Enable profiling

Project Options:

wi2_32. b mpichd.lib kermel32.lib user32.lib gdid2. b ﬂ
winzpoal lib comdlg32 ik advapi32 lib shel32.lib
ole32 lib oleaut32 lib uuid lib odbe32.lib odbecepd2. lib el

Cancel |

[

continue

projectsettngs TR
Settings Forgl'w/in32 Felease j Debug | Fortran | C/C++ Link | Hesnurcaz EE

-- cpi :
=28 fpi Categony: IGeneraI j Fieset |

mandel Output file name:
B mpptest
B8 netpips

" systest Object/library modules:
I |w32_32.|i|:| mpich.lib k;t@llih uzerd2 b gdid2 b winzpo

[T Gererate debuginfo [lgnore all default libraries

|Flelease.n"n::|:ui.e:-:e

[T Link jncrementally [T Generate mapfile
[~ Enable profiing

Froject Options:

wiz_ 32 ib mpich.lib kermel32 b user32 b gdi32. ib ﬂ
winzpoal lib comdlg32. b advapi32 b shel32 b
ole 32 lib oleaut32 lib uuid.lib odbc 32 lib odboep32. b I

k. Cancel

continue

9. Close the project settings dialog box.
10. Add your source files to the project

Microsoft Yisual C++
Inserk |Er|:|jecl: Build Tools Window Help

(] | 3 Set Active Project 4 I’ ||:ii|piecefn
&dd To Project *

Source Control y (G Mew Folder.

Dependencies, .. M
laszes

' Fhy
phals ~ELEE 5 Al+F7 *a,;- [ata Conneckion, ..
ogs Export Makefile, ..
| classzes E‘ Components and Controls, ..
L lassas Insert Project inko Workspace, .. |
b Clazzes

Useful MPI function to test your program

MPI_Get_processor_name(name, resultlen)

" name is a unique specifier for the actual node.
(string)

= resultlen is length of the result returned in
name(integer)

This routine returns the name of the processor on
which it was called at the moment of the call. The
number of characters actually written is returned in the
output argument resultlen.

How to use Microsoft HPC
2008 Cluster to run MPI
applications

ECE 677 Salim Hariri/University of
AviwAnn

	Slide 1
	Distributed Systems Design Framework (Cont)
	Brief overview
	Companion Material
	The Message-Passing Model	
	What is message passing?
	Communication Modes
	Synchronous Vs. Asynchronous
	Synchronous Vs. Asynchronous
(cont.)
	Blocking vs. Non-Blocking
	What is MPI?
	Why to use MPI?
	Is MPI large or small?
	Features that are NOT part of MPI
	Why MPI is simple?
	Skeleton MPI Program
	Initializing MPI
	Startup and endup
	A minimal MPI program(c)
	Commentary
	Notes on C
	Error handling
	Finding out about the environment
	Better Hello(c)
	Some basic concepts
	To use MPI in the ECE systems
	Slide 27
	Slide 28
	Compiling and running
	Slide 30
	Result
	MPI blocking send
	MPI blocking receive
	More comment on send and receive
	Review of Basic MPI routines
	Communication Primitives
	MPI basic send/receive
	Data Types
	MPI Data Types in C
	Why defining the data types during the send of a message?
	Broadcast and reduce
	Global Communications in MPI: Broadcast
	Global Communications in MPI: Broadcast
	Global Communications in MPI: Broadcast
	Global Communications in MPI: Reduction
	Global Communications in MPI: MPI_Reduce
	Global Communications in MPI: MPI_Reduce
	Example: PI in C - 1
	Example: PI in C - 2
	Point to Point Communications in MPI
	Point to Point Communications in MPI
	Point to Point Communications in MPI
	Slide 53
	MPI tags
	MPI_Barrier
	Overview of Some Advanced MPI Routines
	Group routines
	Group routines ...
	Communicator routines
	Collective communication
	Collective Data Movement
	More Collective Data Movement
	Collective Computation
	Timing
	MPI Trace Output
	MPI-2
	Designing MPI programs
	MPI
	MPI v.s. OpenMP
	OpenMP
	Slide 71
	Slide 72
	Unidirectional Communication
	Unidirectional Communication
	
	Bidirectional Communication
	Bidirectional Communication
	Bidirectional Communication
	Bidirectional Communication
	Where to get MPI library?
	Step By Step Installation of MPICH on windows XP(1)
	Step By Step Installation of MPICH on windows XP(2)
	Step By Step Installation of MPICH on windows XP(3)
	Step By Step Installation of MPICH on windows XP(4)
	Step By Step Installation of MPICH on windows XP(5)
	Step By Step Installation of MPICH on windows XP(6)
	Step By Step Installation of MPICH on windows XP(7)
	Step By Step Installation of MPICH on windows XP(8)
	Step By Step Installation of MPICH on windows XP(9)
	Step By Step Installation of MPICH on windows XP(10)
	Step By Step Installation of MPICH on windows XP(11)
	Step By Step Installation of MPICH on windows XP(12)
	Old Compile MSVS 6
	Program with MPI and play with it
	How to run the example
	Create your own project
	Create your own project
	continue
	continue
	continue
	continue
	continue
	continue
	continue
	continue
	Useful MPI function to test your program
	Slide 107

