
ECE 677: Distributed Computing Systems

Salim Hariri
High Performance Distributed Computing

Laboratory

University of Arizona

Tele: (520) 621-4378

Fall 2012

ECE 677 Salim Hariri/University of Arizona

Distributed Systems Design Framework
(Cont)

Distributed Computing Paradigms (DCP)

Computation Models Communication Models

Functional Parallel Data Parallel Message Passing Shared
Memory

System Architecture and Services (SAS)

Architecture Models System Level Services

Computer Networks and Protocols (CNP)

Computer Networks Communication Protocols

 What: standard for a message passing library (C, C++
and Fortran) to be used for message-passing parallel
computing.

 When: 92-94 MPI1; 95-97 MPI2
 Size: MPI1: 127 calls; MPI2: ~150 calls.

 Many parallel programs can be written with 6 basic
functions.

 Functions are orthogonal.
 Support for many different communication paradigms.
 Support for different communication modes.
 Options offered via different function names, rather than

parameters.

 Where:
 Parallel computers and clusters (distributed or shared

memory)
 NOWs (Network of workstations, heterogeneous systems)

 Find more:
http://www.mcs.anl.gov/research/project_detail.php?id=
2

Brief overview

http://www.mcs.anl.gov/Projects/MPI

Companion Material

 Online examples available at
http://www.mcs.anl.gov/mpi/tutorial

 ftp://ftp.mcs.anl.gov/pub/mpi/mpiexmple.tar.
gz contains source code and run scripts that
allows you to evaluate your own MPI
implementation

http://www.mcs.anl.gov/mpi/tutorial
ftp://ftp.mcs.anl.gov/mpi/mpiexmple.tar.gz

The Message-Passing Model

 A process is (traditionally) a program counter and
address space

 Processes may have multiple threads(program
counters and associated stacks) sharing a single
address space. MPI is for communication among
processes, which have separate address spaces.

 Interprocess communication consists of

 Synchronization/Asynchronization

 Movement of data from one process’s address space to
another’s

What is message passing?

 Data transfer.

 Requires cooperation of sender and
receiver

 Cooperation not always apparent in
code

Communication Modes

 Based on the type of send:

 Synchronous: Completes once the
acknowledgement is received by the sender.

 Buffered send: completes immediately,
unless if an error occurs.

 Standard send: completes once the message
has been sent, which may or may not imply
that the message has arrived at its
destination.

 Ready send: completes immediately, if the
receiver is ready for the message it will get
it, otherwise the message is dropped silently.

Synchronous Vs. Asynchronous

 A synchronous communication is not
complete until the message has been
received.

 An asynchronous communication
completes as soon as the message is on
the way.

Synchronous Vs. Asynchronous
(cont.)

Blocking vs. Non-Blocking

 Blocking, means the program will not
continue until the communication is
completed.

 Non-Blocking, means the program will
continue, without waiting for the
communication to be completed.

What is MPI?
 A message-passing library specifications:

 Extended message-passing model
 Not a language or compiler specification
 Not a specific implementation or product

 For parallel computers, clusters, and heterogeneous networks.

 Communication modes: standard, synchronous, buffered, and
ready.

 Designed to permit the development of parallel software libraries.

 Designed to provide access to advanced parallel hardware for
 End users
 Library writers
 Tool developers

Why to use MPI?

 MPI provides a powerful, efficient, and portable
way to express parallel programs.

 MPI was explicitly designed to enable libraries
which may eliminate the need for many users to
learn (much of) MPI.

 Portable !!!!!!!!!!!!!!!!!!!!!!!!!!

Is MPI large or small?

 MPI is large(125 functions)
 MPI’s extensive functionality requires many functions.

 Number of functions not necessarily a measure of
complexity.

 MPI is small(6 functions)
 Many parallel programs can be written with just 6 basic

functions.

 MPI is just right
 One can access flexibility when it is required.

 One need not master all parts of MPI to use it.

 MPI is whatever size you like

Features that are NOT part of
MPI

 Process Management

 Remote memory transfer

 Threads

 Virtual shared memory

Why MPI is simple?
 Many parallel programs can be

written using just these six
functions, only two of which are
non-trivial;

 MPI_INIT

 MPI_FINALIZE

 MPI_COMM_SIZE

 MPI_COMM_RANK

 MPI_SEND

 MPI_RECV

Skeleton MPI Program
#include <mpi.h>

main(int argc, char** argv) {

MPI_Init(&argc, &argv);

/* main part of the program */

Use MPI function call depend on your data partition

and parallization architecture

MPI_Finalize();

}

Initializing MPI

 The first MPI routine called in any MPI
program must be the initialization
routine MPI_INIT

 MPI_INIT is called once by every
process, before any other MPI routines

int mpi_Init(int *argc, char **argv);

Startup and endup

 int MPI_Init(int *argc, char ***argv)

 The first MPI call in any MPI process

 Establishes MPI environment

 One and only one call to MPI_INIT per
process

 int MPI_Finalize(void)

 Exiting from MPI

 Cleans up state of MPI

 The last call of an MPI process

A minimal MPI program(c)

#include “mpi.h”

#include <stdio.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf(“Hello, world!\n”);

MPI_Finalize();

Return 0;

}

Commentary

 #include “mpi.h” provides basic MPI
definitions and types.

 MPI_Init starts MPI

 MPI_Finalize exits MPI

 Note that all non-MPI routines are local;
thus printf run on each process

Notes on C

 In C:

 mpi.h must be included by using #include
mpi.h

 MPI functions return error codes or
MPI_SUCCESS

Error handling

 By default, an error causes all processes to abort.

 The user can have his/her own error handling
routines.

 Some custom error handlers are available for
downloading from the net.

Finding out about the environment

 Two important questions that arise early in a
parallel program are:

-How many processes are participating in this
computation?

-Which one am I?

MPI provides functions to answer these
questions:

-MPI_Comm_size reports the number of processes.

-MPI_Comm_rank reports the rank, a number between 0
and size-1, identifying the calling process.

Better Hello(c)

#include “mpi.h”

#include <stdio.h>

int main(int argc, char *argv[])

{
int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf(“I am %d of\n”, rank, size);

MPI_Finalize();

return 0;

}

Some basic concepts

 Processes can be collected into groups.

 Each message is sent in a context, and must be
received in the same context.

 A group and context together form a communicator.

 A process is identified by its rank in the group
associated with a communicator.

 There is a default communicator whose group
contains all initial processes, called
MPI_COMM_WORLD.

Compiling and running

 Head file

 Fortran -- mpif.h

 C -- mpi.h (*we use C in this presentation)

 Compile:

 implementation dependent. Typically requires
specification of header file directory and MPI library.

 mpiCC –o destination-filename source-file.c

 mpiCC filename

 Run:

 mpirun -np <# proc> <executable>

#include <stdio.h>

#include <string.h> // this allows us to manipulate text strings

#include "mpi.h" // this adds the MPI header files to the program

int main(int argc, char* argv[]) {

int my_rank; // process rank

int p; // number of processes

int source; // rank of sender

int dest; // rank of receiving process

int tag = 0; // tag for messages

char message[100]; // storage for message

MPI_Status status; // stores status for MPI_Recv statements

// starts up MPI

MPI_Init(&argc, &argv);

// finds out rank of each process

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

// finds out number of processes

MPI_Comm_size(MPI_COMM_WORLD, &p);

if (my_rank!=0) {

sprintf(message, "Greetings from process %d!", my_rank);

dest = 0; // sets destination for MPI_Send to process 0

// sends the string to process 0

MPI_Send(message, strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

} else {

for(source = 1; source < p; source++){

// receives greeting from each process

MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);

printf("%s\n", message); // prints out greeting to screen

}

}

MPI_Finalize(); // shuts down MPI

return 0;

}

Result

 mpicc hello.c

 mpirun -np 6 a.out
Greetings from process 1!

Greetings from process 2!

Greetings from process 3!

Greetings from process 4!

Greetings from process 5!

MPI blocking send
MPI_SEND(void *start, int

count,MPI_DATATYPE datatype, int dest,

int tag, MPI_COMM comm)

 The message buffer is described by
(start, count, datatype).

 dest is the rank of the target process in
the defined communicator.

 tag is the message identification number.

MPI blocking receive
MPI_RECV(void *start, int count,

MPI_DATATYPE datatype, int source, int tag,

MPI_COMM comm, MPI_STATUS *status)

 Source is the rank of the sender in the communicator.

 The receiver can specify a wildcard value for souce (MPI_ANY_SOURCE) and/or a
wildcard value for tag (MPI_ANY_TAG), indicating that any source and/or tag are
acceptable

 Status is used for exrtra information about the received message if a wildcard
receive mode is used.

 If the count of the message received is less than or equal to that described by
the MPI receive command, then the message is successfully received. Else it is
considered as a buffer overflow error.

More comment on send and receive

 A receive operation may accept
messages from an arbitrary sender, but
a send operation must specify a unique
receiver.

 Source equals destination is allowed,
that is, a process can send a message
to itself.

Review of Basic MPI routines
 MPI is used to create parallel programs based on

message passing

 Usually the same program is run on multiple
processors

 The 6 basic calls in MPI are:

 MPI_INIT(ierr)

 MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

 MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

 MPI_Send(buffer, count,MPI_INTEGER,destination, tag,
MPI_COMM_WORLD, ierr)

 MPI_Recv(buffer, count, MPI_INTEGER,source,tag,
MPI_COMM_WORLD, status,ierr)

 MPI_FINALIZE(ierr)

ECE 677 Salim Hariri/University of Arizona

Communication Primitives

 Communications on distributed memory computers:

 Point to Point

 One to All Broadcast

 All to All Broadcast

 One to All Personalized

 All to All Personalized

 Shifts

 Collective Computation

MPI basic send/receive

 We need to fill in the details in

Things that need specifying:
How will “data” be described?

How will processes be identified?

How will the receiver recognize/screen messages?

What will it mean for these operation to complete?

Process 0

Send(data)

Process 1

Receive(d
ata)

Data Types
 The data message which is sent or received is

described by a triple (address, count, datatype).

 The following data types are supported by MPI:

 Predefined data types that are corresponding to
data types from the programming language.

 Arrays.

 Sub blocks of a matrix

 User defined data structure.

 A set of predefined data types

MPI Data Types in C

C MPI Types

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE -

MPI_PACKED -

Why defining the data types during
the send of a message?

Because communications take place
between heterogeneous machines. Which
may have different data representation and
length in the memory.

Broadcast and reduce
 MPI_Bcast(buffer, count, datatype, root,

comm)

 Broadcast the message of length count in buffer
from the process root to all other processes in the
group. All processes must call with same
arguments.

 MPI_Reduce(sbuf, rbuf, count, stype, op,
root, comm)

 Apply the reduction function op to the data of
each process in the group (type stype in sbuf) and
store the result in rbuf on the root process. op can
be a pre-defined function, or defined by the user.

Global Communications in MPI: Broadcast

 All nodes call MPI_Bcast

 One node (root) sends a message all
others receive the message

 C
 MPI_Bcast(&buffer, count, datatype, root, communicator);

 Fortran
 call MPI_Bcast(buffer, count, datatype, root, communicator,

ierr)

 Root is node that sends the message

Global Communications in
MPI: Broadcast

 broadcast.c is a parallel program to
broadcast data using MPI_Bcast

 Initialize MPI

 Have processor 0 broadcast an integer

 Have all processors print the data

 Quit MPI

Global Communications in MPI: Broadcast
/**
This is a simple broadcast program in MPI
**/
#include <stdio.h>
#include "mpi.h"
int main(argc,argv)
int argc;
char *argv[];
{

int i,myid, numprocs;
int source,count;
int buffer[4];
MPI_Status status;
MPI_Request request;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
source=0;
count=4;
if(myid == source){
for(i=0;i<count;i++)

buffer[i]=i;
}
MPI_Bcast(buffer,count,MPI_INT,source,MPI_COMM_WORLD);
for(i=0;i<count;i++)
printf("%d ",buffer[i]);

printf("\n");
MPI_Finalize();

}

Global Communications in MPI:
Reduction

 Used to combine partial results from all
processors

 Result returned to root processor

 Several types of operations available. For
example summation, maximum etc

 Works on single elements and arrays

Global Communications in MPI:
MPI_Reduce

 C

 int MPI_Reduce(&sendbuf, &recvbuf, count,
datatype, operation,root, communicator)

 Fortran

 call MPI_Reduce(sendbuf, recvbuf, count,
datatype, operation,root, communicator, ierr)

 Parameters

 Like MPI_Bcast, a root MPI process is specified.

 Operation is mathematical operation

Global Communications in MPI:
MPI_Reduce

MPI_MAX Maximum

MPI_MIN Minimum

MPI_PROD Product

MPI_SUM Sum

MPI_LAND Logical and

MPI_LOR Logical or

MPI_LXOR Logical exclusive or

MPI_BAND Bitwise and

MPI_BOR Bitwise or

MPI_BXOR Bitwise exclusive or

MPI_MAXLOC Maximum value and location

MPI_MINLOC Minimum value and location

Example: PI in C - 1
#include "mpi.h"

#include <math.h>

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done) {

if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;

Example: PI in C - 2

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0)

printf("pi is approximately %.16f, Error is

%.16f\n",

pi, fabs(pi - PI25DT));

}

MPI_Finalize();

return 0;

}

Point to Point Communications in MPI
 Basic operations of Point to Point (PtoP)

communication in MPI

 Several steps are involved in the PtoP
communication

 Sending process

 data is copied to the user buffer by the user

 User calls one of the MPI send routines

 System copies the data from the user buffer to the
system buffer

 System sends the data from the system buffer to the
destination processor

Point to Point Communications in MPI

 Receiving process

 User calls one of the MPI receive subroutines

 System receives the data from the source
process, and copies it to the system buffer

 System copies the data from the system
buffer to the user buffer

 User uses the data in the user buffer

Point to Point Communications in MPI

Process 0 : User mode

sendbuf

Call send routine

Now sendbuf can be reused

Kernel mode

Copying data from sendbuf to

systembuf

Send data from sysbuf to

dest

data
Process 1 : User mode Kernel mode

Call receive routine receive data from

src to

systembuf
Copying data from sysbuf

to recvbuf

sysbuf

sysbuf

recvbuf

Now recvbuf contains

valid data

 More information of point to point
communication are in the Appendixes

ECE 677 Salim Hariri/University of Arizona

MPI tags
 Message are sent with an accompanying

user-defined integer tag, to assist the
receiving process in identifying the
message.

 Message can be screened at the
receiving end by specifying a specific
tag, or not screened by specifying
MPI_ANY_TAG as the tag in a receive.

 Some non-MPI message-passing systems
have called tags”message types”. MPI
calls them tags to avoid confusion with
datatype.

MPI_Barrier

 Blocks the caller until all members in the
communicator have called it.

 Used as a synchronization tool.

 C
 MPI_Barrier(comm)

 Fortran
 Call MPI_BARRIER(COMM, IERROR)

 Parameter

 Comm: communicator (often
MPI_COMM_WORLD)

Overview of Some Advanced MPI Routines

 Can split MPI communicators (MPI_Comm_split)

 Probe incoming messages (MPI_Probe)

 Asynchronous communication (MPI_Isend,
MPI_Irecv, MPI_Wait, MPI_Test etc)

 Scatter different data to different processors
(MPI_Scatter), Gather (MPI_Gather)

 MPI_AllReduce, MPI_Alltoall

 Derived data types (MPI_TYPE_STRUCT etc)

 MPI I/O

Group routines

 MPI_Group_size returns number of processes in group

 MPI_Group_rank returns rank of calling process in group

 MPI_Group_compare compares group members and
group order

 MPI_Group_translate_ranks translates ranks of
processes in one group to those in another group

 MPI_Comm_group returns the group associated with a
communicator

 MPI_Group_union creates a group by combining two
groups

 MPI_Group_intersection creates a group from the
intersection of two groups

Group routines ...
 MPI_Group_difference creates a group from the

difference between two groups

 MPI_Group_incl creates a group from listed
members of an existing group

 MPI_Group_excl creates a group excluding listed
members of an existing group

 MPI_Group_range_incl creates a group according
to first rank, stride, last rank

 MPI_Group_range_excl creates a group by
deleting according to first rank, stride, last rank

 MPI_Group_free marks a group for deallocation

Communicator routines
 MPI_Comm_size returns number of processes in communicator's

group

 MPI_Comm_rank returns rank of calling process in
communicator's group

 MPI_Comm_compare compares two communicators

 MPI_Comm_dup duplicates a communicator

 MPI_Comm_create creates a new communicator for a group

 MPI_Comm_split splits a communicator into multiple, non-
overlapping communicators

 MPI_Comm_free marks a communicator for deallocation

Collective communication
 MPI_Allgather All processes gather messages

 MPI_Allreduce Reduce to all processes

 MPI_Alltoall All processes gather distinct messages

 MPI_Bcast Broadcast a message

 MPI_Gather Gather a message to root

 MPI_Reduce Global reduce operation

 MPI_ReduceScatter Reduce and scatter results

 MPI_Scatter Scatter a message from root

 MPI_Scan Global prefix reduction

A

A

P0
P1

P2

P3

P0
P1

P2

P3

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

More Collective Data
Movement

A
B

D

C

A0B0C0D0

A1B1C1D1

A3B3C3D3

A2B2C2D2

A0A1A2A3

B0B1B2B3

D0D1D2D3

C0C1C2C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0
P1

P2

P3

P0
P1

P2

P3

Collective Computation

P0
P1

P2

P3

P0
P1

P2

P3

A

B

D

C

A

B

D

C

ABCD

A

AB

ABC

ABCD

Reduce

Scan

Timing

 MPI Wtime() returns the wall-clock
time.

double start, finish, time;

MPI_Barrier(MPI_COMM_WORLD);

start = MPI_Wtime();

…

…

MPI_Barrier(MPI_COMM_WORLD);

finish = MPI_Wtime();

time = finish - start;

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_size 1 0.0 0.000

MPI_Comm_rank 1 0.0 0.000

MPI_Send 500 1024.0 0.001

MPI_Recv 500 1024.0 0.008

MPI_Barrier 500 0.0 0.013

total communication time = 0.022 seconds.

total elapsed time = 3.510 seconds.

user cpu time = 3.500 seconds.

system time = 0.010 seconds.

maximum memory size = 15856 KBytes.

Message size distributions:

MPI_Send #calls avg. bytes time(sec)

500 1024.0 0.001

MPI_Recv #calls avg. bytes time(sec)

500 1024.0 0.008

Call Graph Section:

communication time = 0.022 sec, parent = poisson

MPI Routine #calls time(sec)

MPI_Send 500 0.001

MPI_Recv 500 0.008

MPI_Barrier 500 0.013

communication time = 0.000 sec, parent = dot

MPI Routine #calls time(sec)

MPI_Comm_size 1 0.000

MPI_Comm_rank 1 0.000

MPI Trace Output

MPI-2

 MPI-2 new topics:

 process creation and management,
including client/server routines

 one-sided communications (put/get, active
messages)

 extended collective operations

 external interfaces

 I/O

Designing MPI programs

 Partitioning

 Before tackling MPI

 Communication

 Many point to collective
operations

 Agglomeration

 Needed to produce MPI
processes

 Mapping

 Handled by MPI

MPI
 Pros:

 Very portable

 Requires no special compiler

 Requires no special hardware but
can make use of high
performance hardware

 Very flexible -- can handle just
about any model of parallelism

 No shared data! (You don’t have
to worry about processes
"treading on each other's data" by
mistake.)

 Can download free libraries for
your Linux/PC!

 Forces you to do things the "right
way" in terms of decomposing
your problem.

 Cons:

 All-or-nothing parallelism
(difficult to incrementally
parallelize existing serial codes)

 No shared data! Requires
distributed data structures

 Could be thought of assembler
for parallel computing -- you
generally have to write more
code

 Partitioning operations on
distributed arrays can be messy.

MPI v.s. OpenMP

 Message passing v.s. shared data

 Processes v.s. Threads

 MPI has no work sharing structure.

OpenMP

 Pros:
 Incremental parallelism -- can parallelize existing serial codes

one bit at a time
 Quite simple set of directives
 Shared data!
 Partitioning operations on arrays is very simple.

 Cons:
 Requires proprietary compilers
 Requires shared memory multiprocessors
 Shared data!
 Having to think about what data is shared and what data is

private
 Cannot handle models like master/slave work allocation (yet)
 Generally not as scalable (more synchronization points)
 Not well-suited for non-trivial data structures like linked lists,

trees etc

 Homework #1 (programming) will be
posted.

 Due: September 24 before the class

ECE 677 Salim Hariri/University of Arizona

Appendix

ECE 677 Salim Hariri/University of Arizona

Unidirectional Communication
 Blocking send and blocking receive

 if (myrank == 0) then
call MPI_Send(…)

elseif (myrank == 1) then
call MPI_Recv(….)
endif

 Non-blocking send and blocking receive

 if (myrank == 0) then
call MPI_ISend(…)
call MPI_Wait(…)

else if (myrank == 1) then
call MPI_Recv(….)
endif

Unidirectional Communication

 Blocking send and non-blocking recv
if (myrank == 0) then

call MPI_Send(…..)

elseif (myrank == 1) then
call MPI_Irecv (…)
call MPI_Wait(…)

endif

 Non-blocking send and non-blocking recv
if (myrank == 0) then

call MPI_Isend (…)
call MPI_Wait (…)

elseif (myrank == 1) then
call MPI_Irecv (….)
call MPI_Wait(..)

endif

• Need to be careful about deadlock when two processes exchange data with

each other

• Deadlock can occur due to incorrect order of send and recv or due to limited

size of the system buffer

sendbuf

recvbuf

Rank 0 Rank 1

recvbuf

sendbuf

Bidirectional Communication

Bidirectional Communication

 Case 1 : both processes call send first, then recv
if (myrank == 0) then

call MPI_Send(….)
call MPI_Recv (…)

elseif (myrank == 1) then
call MPI_Send(….)
call MPI_Recv(….)

endif

 No deadlock as long as system buffer is larger than send buffer

 Deadlock if system buffer is smaller than send buf

 If you replace MPI_Send with MPI_Isend and MPI_Wait, it is still
the same

 Moral : there may be error in coding that only shows up for
larger problem size

Bidirectional Communication
 Case 2 : both processes call recv first, then send

if (myrank == 0) then
call MPI_Recv(….)
call MPI_Send (…)

elseif (myrank == 1) then
call MPI_Recv(….)
call MPI_Send(….)

endif

 The above will always lead to deadlock (even if you
replace MPI_Send with MPI_Isend and MPI_Wait)

Bidirectional Communication
 The following code can be safely executed

if (myrank == 0) then
call MPI_Irecv(….)
call MPI_Send (…)
call MPI_Wait(…)

elseif (myrank == 1) then
call MPI_Irecv(….)
call MPI_Send(….)
call MPI_Wait(….)

endif

Bidirectional Communication
 Case 3 : one process call send and recv in this order,

and the other calls in the opposite order
if (myrank == 0) then

call MPI_Send(….)
call MPI_Recv(…)

elseif (myrank == 1) then
call MPI_Recv(….)
call MPI_Send(….)

endif

 The above is always safe

 You can replace both send and recv on both processor
with Isend and Irecv

Where to get MPI library?

 MPICH (WINDOWS / UNICES)
 http://www-unix.mcs.anl.gov/mpi/mpich/

 Open MPI (UNICES)
 http://www.open-mpi.org/

SHARED MEMORY
OPENMP

Different types of parallel platforms:
Distributed Memory

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Different types of parallel platforms:
Shared Memory

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Different types of parallel platforms:
Shared Memory

 SMP: Symmetric Multiprocessing

 Identical processing units working from the same main
memory

 SMP machines are becoming more common in the everyday
workplace

 Dual-socket motherboards are very common, and quad-sockets
are not uncommon

 2 and 4 core CPUs are now commonplace

 Intel Larabee: 12-48 cores in 2009-2010

 ASMP: Asymmetric Multiprocessing

 Not all processing units are identical

 Cell processor of PS3
Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Parallel Programming Models

 Shared Memory
 Multiple processors sharing the same memory space

 Message Passing
 Users make calls that explicitly share information between

execution entities

 Remote Memory Access
 Processors can directly access memory on another processor

 These models are then used to build more
sophisticated models
 Loop Driven
 Function Driven Parallel (Task-Level)

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Introduction

 OpenMP is designed for shared memory systems.

 OpenMP is easy to use
 achieve parallelism through compiler directives

 or the occasional function call

 OpenMP is a “quick and dirty” way of parallelizing a
program.

 OpenMP is usually used on existing serial programs
to achieve moderate parallelism with relatively little
effort

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Computational Threads

Thread 0 Thread 1 Thread 2 Thread n

•Each processor has one thread assigned to it
•Each thread runs one copy of your program

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

OpenMP Execution Model
 In MPI, all threads are active all the

time

 In OpenMP, execution begins only on
the master thread. Child threads are
spawned and released as needed.

 Threads are spawned when program enters
a parallel region.

 Threads are released when program exits a
parallel region

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

OpenMP Execution Model

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Parallel Region Example:
For loop

Fortran:

!$omp parallel do

do i = 1, n

a(i) = b(i) + c(i)

enddo

C/C++:
#pragma omp parallel for

for(i=1; i<=n; i++)

a[i] = b[i] + c[i];

This comment or pragma
tells openmp compiler to
spawn threads *and*
distribute work among those
threads

These actions are combined
here but they can be
specified separately
between the threads

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Pros of OpenMP

 Because it takes advantage of shared memory, the
programmer does not need to worry (that much)
about data placement

 Programming model is “serial-like” and thus
conceptually simpler than message passing

 Compiler directives are generally simple and easy to
use

 Legacy serial code does not need to be rewritten

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Cons of OpenMP

 Codes can only be run in shared memory
environments!
 In general, shared memory machines beyond ~8

CPUs are much more expensive than distributed
memory ones, so finding a shared memory system
to run on may be difficult

 Compiler must support OpenMP
 whereas MPI can be installed anywhere

 However, gcc 4.2 now supports OpenMP

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Cons of OpenMP
 In general, only moderate speedups can be

achieved.

 Because OpenMP codes tend to have
serial-only portions, Amdahl’s Law
prohibits substantial speedups

 Amdahl’s Law:

F = Fraction of serial execution time that
cannot be

parallelized

N = Number of processors

Execution time =

If you have big
loops that
dominate
execution time,
these are ideal
targets for

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Compiling and Running OpenMP

 True64: -mp

 SGI IRIX: -mp

 IBM AIX: -qsmp=omp

 Portland Group: -mp

 Intel: -openmp

 gcc (4.2) -fopenmp

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Compiling and Running OpenMP

 OMP_NUM_THREADS environment
variable sets the number of processors
the OpenMP program will have at its
disposal.

 Example script

#!/bin/tcsh

setenv OMP_NUM_THREADS 4

mycode < my.in > my.out

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Divide various
sections of
code between
threads

OpenMP Basics:
2 Approaches to Parallelism

Divide loop iterations
among threads: We
will focus mainly on
loop level parallelism
in this lecture

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Sections: Functional parallelism

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

block1

#pragma omp section

block2

}

}
Image from:
https://computing.llnl.gov/tutorials/openM
P

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Parallel DO/for:
Loop level parallelism

Fortran:

!$omp parallel do

do i = 1, n

a(i) = b(i) + c(i)

enddo

C/C++:
#pragma omp parallel for

for(i=1; i<=n; i++)

a[i] = b[i] + c[i];

Image from:
https://computing.llnl.gov/tutorials/openM
P

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Pitfall #1: Data dependencies
 Consider the following code:

a[0] = 1;

for(i=1; i<5; i++)

a[i] = i + a[i-1];

 There are dependencies between loop iterations.

 Sections of loops split between threads will not
necessarily execute in order

 Out of order loop execution will result in
undefined behavior

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Pitfall #1: Data dependencies

 3 simple rules for data dependencies

1. All assignments are performed on arrays.

2. Each element of an array is assigned to
by at most one iteration.

3. No loop iteration reads array elements
modified by any other iteration.

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Avoiding dependencies by using
Private Variables (Pitfall #1.5)

 Consider the following loop:
#pragma omp parallel for

{

for(i=0; i<n; i++){

temp = 2.0*a[i];

a[i] = temp;

b[i] = c[i]/temp;

}

}

 By default, all threads share a common address
space. Therefore, all threads will be modifying temp
simultaneously

Avoiding dependencies by using
Private Variables (Pitfall #1.5)

 The solution is to make temp a thread-
private variable by using the “private”
clause:

#pragma omp parallel for private(temp)

{

for(i=0; i<n; i++){

temp = 2.0*a[i];

a[i] = temp;

b[i] = c[i]/temp;

}

}
Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing

Avoiding dependencies by using
Private Variables (Pitfall #1.5)

 Default OpenMP behavior is for variables to be
shared. However, sometimes you may wish to
make the default private and explicitly declare
your shared variables (but only in Fortran!):

!$omp parallel do default(private) shared(n,a,b,c)

do i=1,n

temp = 2.0*a(i)

a(i) = temp

b(i) = c(i)/temp;

enddo

!$omp end parallel do

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Private variables
 Note that the loop iteration variable (e.g. i in

previous example) is private by default

 Caution: The value of any variable specified as
private is undefined both upon entering and
leaving the construct in which it is specified

 Use firstprivate and lastprivate clauses to retain
values of variables declared as private

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Use of function calls within parallel
loops

 In general, the compiler will not parallelize a loop that
involves a function call unless is can guarantee that
there are no dependencies between iterations.

 sin(x) is OK, for example, if x is private.

 A good strategy is to inline function calls within loops.
If the compiler can inline the function, it can usually
verify lack of dependencies.

 System calls do not parallelize!!!

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Pitfall #2: Updating shared variables
simultaneously

Consider the following serial code:

the_max = 0;

for (i=0;i<n; i++)

the_max = max(myfunc(a[i]), the_max);

 This loop can be executed in any order, however the_max is
modified every loop iteration.

 Use “critical” clause to specifiy code segments that can only be
executed by one thread at a time:

#pragma omp parallel for private(temp)

{

for(i=0; i<n; i++){

temp = myfunc(a[i]);

#pragma omp critical

the_max = max(temp, the_max);

}

}

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Reduction operations

 Now consider a global sum:
for(i=0; i<n; i++)

sum = sum + a[i];

 This can be done by defining “critical” sections, but
for convenience, OpenMP also provides a reduction
clause:

#pragma omp parallel for reduction(+:sum)

{

for(i=0; i<n; i++)

sum = sum + a[i];

}

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Reduction operations

 C/C++ reduction-able operators (and initial values):

 + (0)

 - (0)

 * (1)

 & (~0)

 | (0)

 ^ (0)

 && (1)

 || (0)

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Pitfall #3: Parallel overhead

 Spawning and releasing threads results
in significant overhead.

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Pitfall #3: Parallel overhead

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Pitfall #3: Parallel Overhead

 Spawning and releasing threads results
in significant overhead.

 Therefore, you want to make your
parallel regions as large as possible
 Parallelize over the largest loop that you

can (even though it will involve more work
to declare all of the private variables and
eliminate dependencies)

 Coarse granularity is your friend!

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Separating “Parallel” and “For”
directives to reduce overhead

 In the following example, threads are
spawned only once, not once per loop:

#pragma omp parallel {

#pragma omp for

for(i=0; i<maxi; i++)

a[i] = b[i];

#pragma omp for

for(j=0; j<maxj; j++)

c[j] = d[j];

}

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Use “nowait” to avoid barriers

 At the end of every loop is an implied barrier.

 Use “nowait” to remove the barrier at the end of the
first loop:

#pragma omp parallel {

#pragma omp for nowait

for(i=0; i<maxi; i++)

a[i] = b[i];

#pragma omp for

for(j=0; j<maxj; j++)

c[j] = d[j];

}

Barrier removed by
“nowait” clause

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Thread stack

 Each thread has its own memory region
called the thread stack

 This can grow to be quite large, so default
size may not be enough

 This can be increased (e.g. to 16 MB):
csh:

limit stacksize 16000; setenv KMP_STACKSIZE 16000000

bash:

ulimit -s 16000; export KMP_STACKSIZE=16000000

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Useful OpenMP Functions
 void omp_set_num_threads(int num_threads)

 Sets the number of OpenMP threads (overrides
OMP_NUM_THREADS)

 int omp_get_thread_num()

 Returns the number of the current thread

 int omp_get_num_threads()

 Returns the total number of threads currently
participating in a parallel region

 Returns “1” if executed in a serial region

 For portability, surround these functions with
#ifdef _OPENMP

 #include <omp.h>
Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Optimization: Scheduling

 OpenMP partitions workload into
“chunks” for distribution among threads

 Default strategy is static:
0

1

2

7

6

3

4

5

L
o
o
p
 i
te

ra
ti
o
n
s

Chunk 0

Chunk 1

Chunk 2

Chunk 3

Thread 0

Thread 1

Thread 2

Thread 3
Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Optimization: Scheduling
 This strategy has the least amount of overhead

 However, if not all iterations take the same amount of
time, this simple strategy will lead to load imbalance.

0

1

2

7

6

3

4

5

L
o
o
p
 i
te

ra
ti
o
n
s

Chunk 0

Chunk 1

Chunk 2

Chunk 3

Thread 0

Thread 1

Thread 2

Thread 3
Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Optimization: Scheduling

 OpenMP offers a variety of scheduling
strategies:
 schedule(static,[chunksize])

 Divides workload into equal-sized chunks

 Default chunksize is Nwork/Nthreads

 Setting chunksize to less than this will result in chunks
being assigned in an interleaved manner

 Lowest overhead

 Least optimal workload distribution

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Optimization: Scheduling

 schedule(dynamic,[chunksize])

 Dynamically assigned chunks to threads

 Default chunksize is 1

 Highest overhead

 Optimal workload distribution

 schedule(guided,[chunksize])

 Starts with big chunks proportional to (number of
unassigned iterations)/(number of threads), then makes
them progressively smaller until chunksize is reached

 Attempts to seek a balance between overhead and
workload optimization

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Optimization: Scheduling

 schedule(runtime)

 Scheduling can be selected at runtime using
OMP_SCHEDULE

 e.g. setenv OMP_SCHEDULE “guided, 100”

 In practice, often use:

 Default scheduling (static, large chunks)

 Guided with default chunksize

 Experiment with your code to determine
optimal strategy

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

What we have learned

 How to compile and run OpenMP progs

 Private vs. shared variables

 Critical sections and reductions for
updating scalar shared variables

 Techniques for minimizing thread
spawning/exiting overhead

 Different scheduling strategies

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

Summary

 OpenMP is often the easiest way to achieve
moderate parallelism on shared memory
machines

 In practice, to achieve decent scaling, will
probably need to invest some amount of
effort in tuning your application.

 More information available at:
 https://computing.llnl.gov/tutorials/openMP/

 http://www.openmp.org

 Using OpenMP, MIT Press, 2008

Philip Blood (Scientific Specialist
)
Pittsburgh Supercomputing
Center

https://computing.llnl.gov/tutorials/openMP/
http://www.openmp.org/

Processes, Threads, and Parallel
Programming

 Process: is a program counter and address space.

 Thread: Threads have their own program counter
and a memory stack, but share the other resources
within the process.

 Shared memory uses thread as their milestone for
parallel programming.

Supercomputing 2008 Education
ProgramGreg Wolffe / Christian Trefftz

Grand Valley State University

Supercomputing 2008 Education
Program

OpenMP

 Portable API for shared memory
thread-based parallelism

 C/C++ and Fortran

 “Fork-Join” model Fork

Join

Master
thread

parall
el

regio
n Master

thread

Greg Wolffe / Christian Trefftz
Grand Valley State University

Supercomputing 2008 Education
Program

OpenMP Fundamentals
 Environment variables

export OMP_NUM_THREADS=“4”

 Library functions
omp_set_num_threads (4);

 Compiler directives (#pragmas)
#pragma omp parallel num_threads (4)

Greg Wolffe / Christian Trefftz
Grand Valley State University

Supercomputing 2008 Education
Program

OpenMP Programming
 Source code

#include “omp.h”

#pragma omp parallel

{

…parallel region

}

 Compiling
g++ -fopenmp filename.cc –o filename

Greg Wolffe / Christian Trefftz
Grand Valley State University

Supercomputing 2008 Education
Program

Directive Responsibility

 Work-sharing

 Data scoping

 Synchronization

 Scheduling

Greg Wolffe / Christian Trefftz
Grand Valley State University

Supercomputing 2008 Education
Program

OpenMP: Work Sharing

 Parallel region: partition work

 Each thread executes same code

 Parallel for loop: partition iterations

 Threads share iterations of loop

 Parallel section: functional parallelism

 Threads perform different tasks

Greg Wolffe / Christian Trefftz
Grand Valley State University

Supercomputing 2008 Education
Program

OpenMP: Data

 Shared: threads access a single copy of
the data object

 Private: each thread gets volatile copy

 Firstprivate: initialized from master

 Lastprivate: master’s copy updated with
last value of last thread

Greg Wolffe / Christian Trefftz
Grand Valley State University

Supercomputing 2008 Education
Program

Critical Section Problem

 Shared memory system shared data

 Shared data concurrent access

 Concurrent access corrupted

variables

 Critical section problem: ensure
“correct” access to shared data

Greg Wolffe / Christian Trefftz
Grand Valley State University

Supercomputing 2008 Education
Program

Data Corruption

Core1 Core2

Memory
[4]

4+1=
5Core1 Core2

Memory
[4]

Core1 Core2

Memory
[?]

4–1=3Inc De
c

5 3

Greg Wolffe / Christian Trefftz
Grand Valley State University

Supercomputing 2008 Education
Program

Concurrency Control

 Synchronization
 Mutex – ensures exclusive access to critical

section of code

 Barrier – causes a group of threads to pause until
all have reached a defined point

 Signalling
 Conditional Wait – waits for some event; signals

when it occurs

 Broadcasting – signals a group of waiting threads

Greg Wolffe / Christian Trefftz
Grand Valley State University

Supercomputing 2008 Education
Program

Mutual Exclusion

// program code

“entry”

// access shared data

“exit”

// program code

Critical
Section

Greg Wolffe / Christian Trefftz
Grand Valley State University

Supercomputing 2008 Education
Program

Barrier

Barrier

Greg Wolffe / Christian Trefftz
Grand Valley State University

Supercomputing 2008 Education
Program 132

Conditional Wait

thread
_1

thread
_2

wait

signal

wait

signal

thread
_1

thread
_2

Greg Wolffe / Christian Trefftz
Grand Valley State University

Supercomputing 2008 Education
Program

Broadcast

thread
_2

wait

thread
_n

wait

thread
_1

signal

…

thread
_1

signal

thread
_2

wait

thread
_n

wait

Greg Wolffe / Christian Trefftz
Grand Valley State University

Supercomputing 2008 Education
Program

OpenMP: Scheduling

 Static: splits iteration space into blocks
of size chunk

 Dynamic: assign blocks to threads as
they become idle (uneven workloads)

 Guided: adjusts chunk-size
exponentially until all assigned

Greg Wolffe / Christian Trefftz
Grand Valley State University

Home Work

