
ECE 677: Distributed Computing Systems

Salim Hariri
High Performance Distributed Computing 

Laboratory

University of Arizona

Tele: (520) 621-4378

Fall 2012



ECE 677 Salim Hariri/University of Arizona

Distributed Systems Design Framework 
(Cont)
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System Architecture and Services (SAS)

Architecture Models System Level Services

Computer Networks and Protocols (CNP)

Computer Networks Communication Protocols



 What: standard for a message passing library (C, C++ 
and Fortran) to be used for message-passing parallel 
computing.

 When: 92-94 MPI1; 95-97 MPI2
 Size: MPI1: 127 calls; MPI2: ~150 calls.

 Many parallel programs can be written with 6 basic 
functions.

 Functions are orthogonal. 
 Support for many different communication paradigms.
 Support for different communication modes.
 Options offered via different function names, rather than 

parameters.

 Where:
 Parallel computers and clusters (distributed or shared 

memory)
 NOWs (Network of workstations, heterogeneous systems)

 Find more: 
http://www.mcs.anl.gov/research/project_detail.php?id=
2

Brief overview

http://www.mcs.anl.gov/Projects/MPI


Companion Material

 Online examples available at 
http://www.mcs.anl.gov/mpi/tutorial

 ftp://ftp.mcs.anl.gov/pub/mpi/mpiexmple.tar.
gz contains source code and run scripts that 
allows you to evaluate your own MPI 
implementation

http://www.mcs.anl.gov/mpi/tutorial
ftp://ftp.mcs.anl.gov/mpi/mpiexmple.tar.gz


The Message-Passing Model

 A process is (traditionally) a program counter and 
address space

 Processes may have multiple threads(program 
counters and associated stacks) sharing a single 
address space. MPI is for communication among 
processes, which have separate address spaces. 

 Interprocess communication consists of 

 Synchronization/Asynchronization

 Movement of data from one process’s address space to 
another’s



What is message passing?

 Data transfer.

 Requires cooperation of sender and 
receiver

 Cooperation not always apparent in 
code



Communication Modes

 Based on the type of send:

 Synchronous: Completes once the 
acknowledgement is received by the sender.

 Buffered send: completes immediately, 
unless if an error occurs.

 Standard send: completes once the message 
has been sent, which may or may not imply 
that the message has arrived at its 
destination.

 Ready send: completes immediately, if the 
receiver is ready for the message it will get 
it, otherwise the message is dropped silently.



Synchronous Vs. Asynchronous

 A synchronous communication is not 
complete until the message has been 
received.

 An asynchronous communication 
completes as soon as the message is on 
the way.



Synchronous Vs. Asynchronous
( cont. )



Blocking vs. Non-Blocking

 Blocking, means the program will not 
continue until the communication is 
completed.

 Non-Blocking, means the program will 
continue, without waiting for the 
communication to be completed.



What is MPI?
 A message-passing library specifications:

 Extended message-passing model
 Not a language or compiler specification
 Not a specific implementation or product

 For parallel computers, clusters, and heterogeneous networks.

 Communication modes: standard, synchronous, buffered, and 
ready.

 Designed to permit the development of parallel software libraries.

 Designed to provide access to advanced parallel hardware for 
 End users
 Library writers
 Tool developers



Why to use MPI?

 MPI provides a powerful, efficient, and portable 
way to express parallel programs. 

 MPI was explicitly designed to enable libraries 
which may eliminate the need for many users to 
learn (much of) MPI.

 Portable !!!!!!!!!!!!!!!!!!!!!!!!!!



Is MPI large or small?

 MPI is large(125 functions)
 MPI’s extensive functionality requires many functions. 

 Number of functions not necessarily a measure of 
complexity.

 MPI is small(6 functions)
 Many parallel programs can be written with just 6 basic 

functions.

 MPI is just right
 One can access flexibility when it is required.

 One need not master all parts of MPI to use it.

 MPI is whatever size you like



Features that are NOT part of 
MPI

 Process Management

 Remote memory transfer

 Threads

 Virtual shared memory



Why MPI is simple?
 Many parallel programs can be 

written using just these six 
functions, only two of which are 
non-trivial;

 MPI_INIT

 MPI_FINALIZE

 MPI_COMM_SIZE

 MPI_COMM_RANK

 MPI_SEND

 MPI_RECV



Skeleton MPI Program
#include <mpi.h>

main( int argc, char** argv ) {

MPI_Init( &argc, &argv );

/* main part of the program */

Use MPI function call depend on your data partition 

and parallization architecture

MPI_Finalize();

}



Initializing MPI

 The first MPI routine called in any MPI 
program must be the initialization 
routine MPI_INIT

 MPI_INIT is called once by every 
process, before any other MPI routines

int mpi_Init( int *argc, char **argv );



Startup and endup

 int MPI_Init(int *argc, char ***argv)

 The first MPI call in any MPI process 

 Establishes MPI environment 

 One and only one call to MPI_INIT per 
process 

 int MPI_Finalize(void)

 Exiting from MPI 

 Cleans up state of MPI 

 The last call of an MPI process 



A minimal MPI program(c)

#include “mpi.h”

#include <stdio.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf(“Hello, world!\n”);

MPI_Finalize();

Return 0;

}



Commentary

 #include “mpi.h” provides basic MPI 
definitions and types.

 MPI_Init starts MPI

 MPI_Finalize exits MPI

 Note that all non-MPI routines are local; 
thus printf run on each process



Notes on C 

 In C:

 mpi.h must be included by using #include 
mpi.h

 MPI functions return error codes or 
MPI_SUCCESS



Error handling

 By default, an error causes all processes to abort.

 The user can have his/her own error handling 
routines.

 Some custom error handlers are available for 
downloading from the net.



Finding out about the environment

 Two important questions that arise early in a 
parallel program are:

-How many processes are participating in this 
computation?

-Which one am I?

MPI provides functions to answer these 
questions: 

-MPI_Comm_size reports the number of processes.

-MPI_Comm_rank reports the rank, a number between 0 
and size-1, identifying the calling process. 



Better Hello(c)

#include “mpi.h”

#include <stdio.h>

int main(int argc, char *argv[])

{
int rank, size; 

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf(“I am %d of\n”, rank, size);

MPI_Finalize();

return 0;

}



Some basic concepts

 Processes can be collected into groups.

 Each message is sent in a context, and must be 
received in the same context.

 A group and context together form a communicator.

 A process is identified by its rank in the group 
associated with a communicator. 

 There is a default communicator whose group 
contains all initial processes, called 
MPI_COMM_WORLD.



Compiling and running

 Head file

 Fortran -- mpif.h 

 C -- mpi.h (*we use C in this presentation)

 Compile: 

 implementation dependent. Typically requires 
specification of header file directory and MPI library.

 mpiCC –o destination-filename source-file.c

 mpiCC filename

 Run:

 mpirun -np <# proc> <executable>



#include <stdio.h>

#include <string.h>     // this allows us to manipulate text strings

#include "mpi.h"        // this adds the MPI header files to the program

int main(int argc, char* argv[]) {

int my_rank;        // process rank

int p;              // number of processes

int source;         // rank of sender

int dest;           // rank of receiving process

int tag = 0;        // tag for messages

char message[100];  // storage for message

MPI_Status status;  // stores status for MPI_Recv statements

// starts up MPI

MPI_Init(&argc, &argv);

// finds out rank of each process

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

// finds out number of processes

MPI_Comm_size(MPI_COMM_WORLD, &p);

if (my_rank!=0) {

sprintf(message, "Greetings from process %d!", my_rank);

dest = 0; // sets destination for MPI_Send to process 0

// sends the string to process 0

MPI_Send(message, strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

} else {

for(source = 1; source < p; source++){

// receives greeting from each process

MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);

printf("%s\n", message); // prints out greeting to screen

}

}

MPI_Finalize(); // shuts down MPI

return 0;

}



Result

 mpicc hello.c

 mpirun -np 6 a.out
Greetings from process 1!

Greetings from process 2!

Greetings from process 3!

Greetings from process 4!

Greetings from process 5!



MPI blocking send
MPI_SEND(void *start, int

count,MPI_DATATYPE datatype, int dest, 

int tag, MPI_COMM comm)

 The message buffer is described by 
(start, count, datatype).

 dest is the rank of the target process in 
the defined communicator.

 tag is the message identification number.



MPI blocking receive
MPI_RECV(void *start, int count, 

MPI_DATATYPE datatype, int source, int tag, 

MPI_COMM comm, MPI_STATUS *status)

 Source is the rank of the sender in the communicator.

 The receiver can specify a wildcard value for souce (MPI_ANY_SOURCE) and/or a 
wildcard value for tag (MPI_ANY_TAG), indicating that any source and/or tag are 
acceptable

 Status is used for exrtra information about the received message if a wildcard 
receive mode is used.

 If the count of the message received is less than or equal to that described by 
the MPI receive command, then the message is successfully received. Else it is 
considered as a buffer overflow error.



More comment on send and receive

 A receive operation may accept 
messages from an arbitrary sender, but 
a send operation must specify a unique 
receiver. 

 Source equals destination is allowed, 
that is, a process can send a message 
to itself. 



Review of Basic MPI routines
 MPI is used to create parallel programs based on 

message passing

 Usually the same program is run on multiple 
processors

 The 6 basic calls in MPI are:

 MPI_INIT( ierr )

 MPI_COMM_RANK( MPI_COMM_WORLD, myid, ierr )

 MPI_COMM_SIZE( MPI_COMM_WORLD, numprocs, ierr )

 MPI_Send(buffer, count,MPI_INTEGER,destination, tag, 
MPI_COMM_WORLD, ierr)

 MPI_Recv(buffer, count, MPI_INTEGER,source,tag, 
MPI_COMM_WORLD, status,ierr)

 MPI_FINALIZE(ierr)
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Communication Primitives

 Communications on distributed memory computers: 

 Point to Point 

 One to All Broadcast 

 All to All Broadcast 

 One to All Personalized 

 All to All Personalized 

 Shifts 

 Collective Computation 



MPI basic send/receive

 We need to fill in the details in 

Things that need specifying:
How will “data” be described?

How will processes be identified?

How will the receiver recognize/screen messages?

What will it mean for these operation to complete?

Process 0

Send(data)

Process 1

Receive(d
ata)



Data Types
 The data message which is sent or received is

described by a triple (address, count, datatype).

 The following data types are supported by MPI:

 Predefined data types that are corresponding to
data types from the programming language.

 Arrays.

 Sub blocks of a matrix

 User defined data structure.

 A set of predefined data types



MPI Data Types in C

C MPI Types

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE -

MPI_PACKED -



Why defining the data types during 
the send of a message?

Because communications take place
between heterogeneous machines. Which
may have different data representation and
length in the memory.



Broadcast and reduce
 MPI_Bcast(buffer, count, datatype, root, 

comm) 

 Broadcast the message of length count in buffer 
from the process root to all other processes in the 
group. All processes must call with same 
arguments.

 MPI_Reduce(sbuf, rbuf, count, stype, op, 
root, comm ) 

 Apply the reduction function op to the data of 
each process in the group (type stype in sbuf) and 
store the result in rbuf on the root process. op can 
be a pre-defined function, or defined by the user.



Global Communications in MPI: Broadcast

 All nodes call MPI_Bcast

 One node (root) sends a message all 
others receive the message 

 C 
 MPI_Bcast(&buffer, count, datatype, root, communicator);

 Fortran 
 call MPI_Bcast(buffer, count, datatype, root, communicator, 

ierr)

 Root is node that sends the message



Global Communications in 
MPI: Broadcast

 broadcast.c is a parallel program to 
broadcast data using MPI_Bcast

 Initialize MPI 

 Have processor 0 broadcast an integer 

 Have all processors print the data 

 Quit MPI



Global Communications in MPI: Broadcast
/************************************************************
This is a simple broadcast program in MPI
************************************************************/
#include <stdio.h>
#include "mpi.h"
int main(argc,argv)
int argc;
char *argv[];
{

int i,myid, numprocs;
int source,count;
int buffer[4];
MPI_Status status;
MPI_Request request;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
source=0;
count=4;
if(myid == source){
for(i=0;i<count;i++)

buffer[i]=i;
}
MPI_Bcast(buffer,count,MPI_INT,source,MPI_COMM_WORLD);
for(i=0;i<count;i++)
printf("%d ",buffer[i]);

printf("\n");
MPI_Finalize();

}



Global Communications in MPI: 
Reduction

 Used to combine partial results from all 
processors

 Result returned to root processor

 Several types of operations available. For 
example summation, maximum etc

 Works on single elements and arrays



Global Communications in MPI: 
MPI_Reduce

 C 

 int MPI_Reduce(&sendbuf, &recvbuf, count, 
datatype, operation,root, communicator)

 Fortran 

 call MPI_Reduce(sendbuf, recvbuf, count, 
datatype, operation,root, communicator, ierr)

 Parameters

 Like MPI_Bcast, a root MPI process is specified. 

 Operation is mathematical operation



Global Communications in MPI: 
MPI_Reduce

MPI_MAX Maximum

MPI_MIN Minimum

MPI_PROD Product

MPI_SUM Sum

MPI_LAND Logical and

MPI_LOR Logical or

MPI_LXOR Logical exclusive or

MPI_BAND Bitwise and

MPI_BOR Bitwise or

MPI_BXOR Bitwise exclusive or

MPI_MAXLOC Maximum value and location

MPI_MINLOC Minimum value and location



Example:  PI in C - 1
#include "mpi.h"

#include <math.h>

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done)  {

if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;



Example:  PI in C - 2

h   = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0)

printf("pi is approximately %.16f, Error is 

%.16f\n",

pi, fabs(pi - PI25DT));

}

MPI_Finalize();

return 0;

}



Point to Point Communications in MPI
 Basic operations of Point to Point (PtoP) 

communication in MPI

 Several steps are involved in the PtoP
communication

 Sending process

 data is copied to the user buffer by the user

 User calls one of the MPI send routines

 System copies the data from the user buffer to the 
system buffer

 System sends the data from the system buffer to the 
destination processor



Point to Point Communications in MPI

 Receiving process

 User calls one of the MPI receive subroutines

 System receives the data from the source 
process, and copies it to the system buffer

 System copies the data from the system 
buffer to the user buffer

 User uses the data in the user buffer



Point to Point Communications in MPI

Process 0 : User mode                                            

sendbuf

Call send routine

Now sendbuf can be reused

Kernel mode

Copying data from sendbuf to 

systembuf

Send data from sysbuf to 

dest

data
Process 1 : User mode Kernel mode

Call receive routine receive data from 

src to 

systembuf
Copying data from sysbuf

to recvbuf

sysbuf

sysbuf

recvbuf

Now recvbuf contains 

valid data



 More information of point to point 
communication are in the Appendixes
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MPI tags
 Message are sent with an accompanying 

user-defined integer tag, to assist the 
receiving process in identifying the 
message. 

 Message can be screened at the 
receiving end by specifying a specific 
tag, or not screened by specifying 
MPI_ANY_TAG as the tag in a receive. 

 Some non-MPI message-passing systems 
have called tags”message types”. MPI 
calls them tags to avoid confusion with 
datatype. 



MPI_Barrier

 Blocks the caller until all members in the 
communicator have called it. 

 Used as a synchronization tool. 

 C 
 MPI_Barrier(comm )

 Fortran 
 Call MPI_BARRIER(COMM, IERROR)

 Parameter 

 Comm: communicator (often 
MPI_COMM_WORLD)



Overview of Some Advanced MPI Routines

 Can split MPI communicators (MPI_Comm_split)

 Probe incoming messages (MPI_Probe)

 Asynchronous communication (MPI_Isend, 
MPI_Irecv, MPI_Wait, MPI_Test etc)

 Scatter different data to different processors 
(MPI_Scatter), Gather (MPI_Gather)

 MPI_AllReduce, MPI_Alltoall

 Derived data types (MPI_TYPE_STRUCT etc)

 MPI I/O



Group routines

 MPI_Group_size returns number of processes in group 

 MPI_Group_rank returns rank of calling process in group 

 MPI_Group_compare compares group members and 
group order 

 MPI_Group_translate_ranks translates ranks of 
processes in one group to those in another group 

 MPI_Comm_group returns the group associated with a 
communicator 

 MPI_Group_union creates a group by combining two 
groups 

 MPI_Group_intersection creates a group from the 
intersection of two groups 



Group routines ...
 MPI_Group_difference creates a group from the 

difference between two groups 

 MPI_Group_incl creates a group from listed 
members of an existing group 

 MPI_Group_excl creates a group excluding listed 
members of an existing group 

 MPI_Group_range_incl creates a group according 
to first rank, stride, last rank 

 MPI_Group_range_excl creates a group by 
deleting according to first rank, stride, last rank 

 MPI_Group_free marks a group for deallocation 



Communicator routines
 MPI_Comm_size returns number of processes in communicator's 

group 

 MPI_Comm_rank returns rank of calling process in 
communicator's group 

 MPI_Comm_compare compares two communicators 

 MPI_Comm_dup duplicates a communicator 

 MPI_Comm_create creates a new communicator for a group 

 MPI_Comm_split splits a communicator into multiple, non-
overlapping communicators 

 MPI_Comm_free marks a communicator for deallocation



Collective communication
 MPI_Allgather All processes gather messages 

 MPI_Allreduce Reduce to all processes 

 MPI_Alltoall All processes gather distinct messages 

 MPI_Bcast Broadcast a message 

 MPI_Gather Gather a message to root 

 MPI_Reduce Global reduce operation 

 MPI_ReduceScatter Reduce and scatter results 

 MPI_Scatter Scatter a message from root 

 MPI_Scan Global prefix reduction 



A

A

P0
P1

P2

P3

P0
P1

P2

P3

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather



More Collective Data 
Movement
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Collective Computation
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Timing

 MPI Wtime() returns the wall-clock 
time.

double start, finish, time;

MPI_Barrier(MPI_COMM_WORLD);

start = MPI_Wtime();

…

…

MPI_Barrier(MPI_COMM_WORLD);

finish = MPI_Wtime();

time = finish - start;



-----------------------------------------------------------------

MPI Routine                  #calls     avg. bytes      time(sec)

-----------------------------------------------------------------

MPI_Comm_size                     1            0.0          0.000

MPI_Comm_rank                     1            0.0          0.000

MPI_Send                        500         1024.0          0.001

MPI_Recv                        500         1024.0          0.008

MPI_Barrier                     500            0.0          0.013

-----------------------------------------------------------------

total communication time = 0.022 seconds.

total elapsed time       = 3.510 seconds.

user cpu time            = 3.500 seconds.

system time              = 0.010 seconds.

maximum memory size      = 15856 KBytes.

-----------------------------------------------------------------

Message size distributions:

MPI_Send                  #calls    avg. bytes      time(sec)

500        1024.0          0.001

MPI_Recv                  #calls    avg. bytes      time(sec)

500        1024.0          0.008

-----------------------------------------------------------------

Call Graph Section:

communication time = 0.022 sec, parent = poisson

MPI Routine                  #calls        time(sec)

MPI_Send                        500           0.001

MPI_Recv                        500           0.008

MPI_Barrier                     500           0.013

communication time = 0.000 sec, parent = dot

MPI Routine                  #calls        time(sec)

MPI_Comm_size                     1           0.000

MPI_Comm_rank                     1           0.000

MPI Trace Output



MPI-2

 MPI-2 new topics:

 process creation and management, 
including client/server routines 

 one-sided communications (put/get, active 
messages) 

 extended collective operations 

 external interfaces 

 I/O 



Designing MPI programs

 Partitioning

 Before tackling MPI

 Communication

 Many point to collective 
operations

 Agglomeration

 Needed to produce MPI 
processes

 Mapping

 Handled by MPI



MPI
 Pros: 

 Very portable 

 Requires no special compiler 

 Requires no special hardware but 
can make use of high 
performance hardware 

 Very flexible -- can handle just 
about any model of parallelism 

 No shared data! (You don’t have 
to worry about processes 
"treading on each other's data" by 
mistake.) 

 Can download free libraries for 
your Linux/PC! 

 Forces you to do things the "right 
way" in terms of decomposing 
your problem. 

 Cons: 

 All-or-nothing parallelism 
(difficult to incrementally 
parallelize existing serial codes) 

 No shared data! Requires 
distributed data structures 

 Could be thought of assembler 
for parallel computing -- you 
generally have to write more 
code 

 Partitioning operations on 
distributed arrays can be messy. 



MPI v.s. OpenMP

 Message passing v.s. shared data

 Processes v.s. Threads

 MPI has no work sharing structure.



OpenMP

 Pros: 
 Incremental parallelism -- can parallelize existing serial codes 

one bit at a time 
 Quite simple set of directives 
 Shared data! 
 Partitioning operations on arrays is very simple. 

 Cons: 
 Requires proprietary compilers 
 Requires shared memory multiprocessors 
 Shared data! 
 Having to think about what data is shared and what data is 

private 
 Cannot handle models like master/slave work allocation (yet) 
 Generally not as scalable (more synchronization points) 
 Not well-suited for non-trivial data structures like linked lists, 

trees etc 



 Homework #1 (programming) will be 
posted.

 Due: September 24 before the class
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Appendix
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Unidirectional Communication
 Blocking send and blocking receive

 if (myrank == 0) then 
call MPI_Send(…)

elseif (myrank == 1) then
call MPI_Recv(….)
endif

 Non-blocking send and blocking receive

 if (myrank == 0) then
call MPI_ISend(…)
call MPI_Wait(…)

else if (myrank == 1) then
call MPI_Recv(….)
endif



Unidirectional Communication

 Blocking send and non-blocking recv
if (myrank == 0 ) then

call MPI_Send(…..)

elseif (myrank == 1) then
call MPI_Irecv (…)
call MPI_Wait(…)

endif

 Non-blocking send and non-blocking recv
if (myrank == 0 ) then

call MPI_Isend (…)
call MPI_Wait (…)

elseif (myrank == 1) then
call MPI_Irecv (….)
call MPI_Wait(..)

endif



• Need to be careful about deadlock when two processes exchange data with 

each other  

• Deadlock can occur due to incorrect order of send and recv or due to limited 

size of the system buffer

sendbuf

recvbuf

Rank 0 Rank 1

recvbuf

sendbuf

Bidirectional Communication



Bidirectional Communication

 Case 1 : both processes call send first, then recv
if (myrank == 0 ) then

call MPI_Send(….)
call MPI_Recv (…)

elseif (myrank == 1) then
call MPI_Send(….)
call MPI_Recv(….)

endif

 No deadlock as long as system buffer is larger than send buffer

 Deadlock if system buffer is smaller than send buf

 If you replace MPI_Send with MPI_Isend and MPI_Wait, it is still 
the same

 Moral : there may be error in coding that only shows up for 
larger problem size



Bidirectional Communication
 Case 2 : both processes call recv first, then send 

if (myrank == 0 ) then
call MPI_Recv(….)
call MPI_Send (…)

elseif (myrank == 1) then
call MPI_Recv(….)
call MPI_Send(….)

endif

 The above will always lead to deadlock (even if you 
replace MPI_Send with MPI_Isend and MPI_Wait)



Bidirectional Communication
 The following code can be safely executed

if (myrank == 0 ) then
call MPI_Irecv(….)
call MPI_Send (…)
call MPI_Wait(…)

elseif (myrank == 1) then
call MPI_Irecv(….)
call MPI_Send(….)
call MPI_Wait(….)

endif 



Bidirectional Communication
 Case 3 : one process call send and recv in this order, 

and the other calls in the opposite order
if (myrank == 0 ) then

call MPI_Send(….)
call MPI_Recv(…)

elseif (myrank == 1) then
call MPI_Recv(….)
call MPI_Send(….)

endif

 The above is always safe

 You can replace both send and recv on both processor 
with Isend and Irecv



Where to get MPI library?

 MPICH ( WINDOWS / UNICES )
 http://www-unix.mcs.anl.gov/mpi/mpich/

 Open MPI (UNICES)
 http://www.open-mpi.org/



SHARED MEMORY
OPENMP



Different types of parallel platforms: 
Distributed Memory

Philip Blood ( Scientific Specialist 
)
Pittsburgh Supercomputing 
Center



Different types of parallel platforms: 
Shared Memory

Philip Blood ( Scientific Specialist 
)
Pittsburgh Supercomputing 
Center



Different types of parallel platforms: 
Shared Memory

 SMP: Symmetric Multiprocessing

 Identical processing units working from the same main 
memory

 SMP machines are becoming more common in the everyday 
workplace

 Dual-socket motherboards are very common, and quad-sockets 
are not uncommon

 2 and 4 core CPUs are now commonplace

 Intel Larabee: 12-48 cores in 2009-2010

 ASMP: Asymmetric Multiprocessing

 Not all processing units are identical

 Cell processor of PS3
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Parallel Programming Models

 Shared Memory
 Multiple processors sharing the same memory space

 Message Passing
 Users make calls that explicitly share information between 

execution entities

 Remote Memory Access
 Processors can directly access memory on another processor

 These models are then used to build more 
sophisticated models
 Loop Driven
 Function Driven Parallel (Task-Level)
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Introduction

 OpenMP is designed for shared memory systems.

 OpenMP is easy to use
 achieve parallelism through compiler directives

 or the occasional function call

 OpenMP is a “quick and dirty” way of parallelizing a 
program.

 OpenMP is usually used on existing serial programs 
to achieve moderate parallelism with relatively little 
effort
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Computational Threads

Thread 0 Thread 1 Thread 2 Thread n

•Each processor has one thread assigned to it
•Each thread runs one copy of your program
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OpenMP Execution Model
 In MPI, all threads are active all the 

time

 In OpenMP, execution begins only on 
the master thread.  Child threads are 
spawned and released as needed.

 Threads are spawned when program enters 
a parallel region.

 Threads are released when program exits a 
parallel region
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OpenMP Execution Model
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Parallel Region Example:
For loop

Fortran:

!$omp parallel do

do i = 1, n 

a(i) = b(i) + c(i) 

enddo 

C/C++:
#pragma omp parallel for

for(i=1; i<=n; i++) 

a[i] = b[i] + c[i]; 

This comment or pragma 
tells openmp compiler to 
spawn threads *and* 
distribute work among those 
threads

These actions are combined 
here but they can be 
specified separately
between the threads
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Pros of OpenMP

 Because it takes advantage of shared memory, the 
programmer does not need to worry (that much) 
about data placement

 Programming model is “serial-like” and thus 
conceptually simpler than message passing

 Compiler directives are generally simple and easy to 
use

 Legacy serial code does not need to be rewritten
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Cons of OpenMP

 Codes can only be run in shared memory 
environments!
 In general, shared memory machines beyond ~8 

CPUs are much more expensive than distributed 
memory ones, so finding a shared memory system 
to run on may be difficult

 Compiler must support OpenMP
 whereas MPI can be installed anywhere

 However, gcc 4.2 now supports OpenMP
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Cons of OpenMP
 In general, only moderate speedups can be 

achieved.

 Because OpenMP codes tend to have 
serial-only portions, Amdahl’s Law 
prohibits substantial speedups

 Amdahl’s Law:

F = Fraction of serial execution time that 
cannot be     

parallelized

N = Number of processors

Execution time =

If you have big 
loops that 
dominate 
execution time, 
these are ideal 
targets for 
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Compiling and Running OpenMP

 True64: -mp

 SGI IRIX: -mp 

 IBM AIX: -qsmp=omp 

 Portland Group:           -mp 

 Intel: -openmp

 gcc (4.2)                        -fopenmp
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Compiling and Running OpenMP

 OMP_NUM_THREADS environment 
variable sets the number of processors 
the OpenMP program will have at its 
disposal.

 Example script

#!/bin/tcsh

setenv OMP_NUM_THREADS 4

mycode < my.in > my.out 
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Divide various 
sections of 
code between 
threads

OpenMP Basics:
2 Approaches to Parallelism

Divide loop iterations 
among threads: We 
will focus mainly on 
loop level parallelism 
in this lecture
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Sections: Functional parallelism

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

block1

#pragma omp section

block2

}

}
Image from: 
https://computing.llnl.gov/tutorials/openM
P
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Parallel DO/for: 
Loop level parallelism

Fortran:

!$omp parallel do

do i = 1, n 

a(i) = b(i) + c(i) 

enddo 

C/C++:
#pragma omp parallel for

for(i=1; i<=n; i++) 

a[i] = b[i] + c[i]; 

Image from: 
https://computing.llnl.gov/tutorials/openM
P
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Pitfall #1: Data dependencies
 Consider the following code:

a[0] = 1;

for(i=1; i<5; i++) 

a[i] = i + a[i-1]; 

 There are dependencies between loop iterations. 

 Sections of loops split between threads will not 
necessarily execute in order

 Out of order loop execution will result in 
undefined behavior
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Pitfall #1: Data dependencies

 3 simple rules for data dependencies

1. All assignments are performed on arrays. 

2. Each element of an array is assigned to 
by at most one iteration. 

3. No loop iteration reads array elements 
modified by any other iteration. 
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Avoiding dependencies by using 
Private Variables (Pitfall #1.5)

 Consider the following loop:
#pragma omp parallel for 

{ 

for(i=0; i<n; i++){ 

temp = 2.0*a[i]; 

a[i] = temp; 

b[i] = c[i]/temp; 

} 

} 

 By default, all threads share a common address 
space.  Therefore, all threads will be modifying temp
simultaneously



Avoiding dependencies by using 
Private Variables (Pitfall #1.5)

 The solution is to make temp a thread-
private variable by using the “private” 
clause:

#pragma omp parallel for private(temp)

{ 

for(i=0; i<n; i++){ 

temp = 2.0*a[i]; 

a[i] = temp; 

b[i] = c[i]/temp; 

} 

} 
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Avoiding dependencies by using 
Private Variables (Pitfall #1.5)

 Default OpenMP behavior is for variables to be 
shared.  However, sometimes you may wish to 
make the default private and explicitly declare 
your shared variables (but only in Fortran!):

!$omp parallel do default(private) shared(n,a,b,c)

do i=1,n

temp = 2.0*a(i) 

a(i) = temp

b(i) = c(i)/temp; 

enddo

!$omp end parallel do
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Private variables
 Note that the loop iteration variable (e.g. i in 

previous example) is private by default

 Caution: The value of any variable specified as 
private is undefined both upon entering and 
leaving the construct in which it is specified

 Use firstprivate and lastprivate clauses to retain 
values of variables declared as private
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Use of function calls within parallel 
loops

 In general, the compiler will not parallelize a loop that 
involves a function call unless is can guarantee that 
there are no dependencies between iterations.

 sin(x) is OK, for example, if x is private.

 A good strategy is to inline function calls within loops.  
If the compiler can inline the function, it can usually 
verify lack of dependencies.

 System calls do not parallelize!!!
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Pitfall #2: Updating shared variables 
simultaneously

Consider the following serial code:

the_max = 0;

for (i=0;i<n; i++) 

the_max = max(myfunc(a[i]), the_max);

 This loop can be executed in any order, however the_max is 
modified every loop iteration.

 Use “critical” clause to specifiy code segments that can only be 
executed by one thread at a time:

#pragma omp parallel for private(temp)

{ 

for(i=0; i<n; i++){ 

temp = myfunc(a[i]); 

#pragma omp critical

the_max = max(temp, the_max); 

} 

}

Philip Blood ( Scientific Specialist 
)
Pittsburgh Supercomputing 
Center



Reduction operations

 Now consider a global sum:
for(i=0; i<n; i++)

sum = sum + a[i]; 

 This can be done by defining “critical” sections, but 
for convenience, OpenMP also provides a reduction
clause:

#pragma omp parallel for reduction(+:sum)

{

for(i=0; i<n; i++)

sum = sum + a[i];

} 
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Reduction operations

 C/C++ reduction-able operators (and initial values):

 + (0)

 - (0)

 * (1)

 & (~0)

 | (0)

 ^ (0)

 && (1)

 || (0)
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Pitfall #3: Parallel overhead

 Spawning and releasing threads results 
in significant overhead.
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Pitfall #3: Parallel overhead
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Pitfall #3: Parallel Overhead

 Spawning and releasing threads results 
in significant overhead.

 Therefore, you want to make your 
parallel regions as large as possible 
 Parallelize over the largest loop that you 

can (even though it will involve more work 
to declare all of the private variables and 
eliminate dependencies)

 Coarse granularity is your friend!
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Separating “Parallel” and “For” 
directives to reduce overhead

 In the following example, threads are 
spawned only once, not once per loop:

#pragma omp parallel { 

#pragma omp for 

for(i=0; i<maxi; i++) 

a[i] = b[i];

#pragma omp for 

for(j=0; j<maxj; j++)

c[j] = d[j];

} 
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Use “nowait” to avoid barriers

 At the end of every loop is an implied barrier. 

 Use “nowait” to remove the barrier at the end of the 
first loop:

#pragma omp parallel { 

#pragma omp for nowait

for(i=0; i<maxi; i++) 

a[i] = b[i];

#pragma omp for 

for(j=0; j<maxj; j++)

c[j] = d[j];

} 

Barrier removed by 
“nowait” clause
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Thread stack

 Each thread has its own memory region 
called the thread stack

 This can grow to be quite large, so default 
size may not be enough

 This can be increased (e.g. to 16 MB):
csh:

limit stacksize 16000; setenv KMP_STACKSIZE 16000000

bash:

ulimit -s 16000; export KMP_STACKSIZE=16000000
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Useful OpenMP Functions
 void omp_set_num_threads(int num_threads)

 Sets the number of OpenMP threads (overrides 
OMP_NUM_THREADS)

 int omp_get_thread_num()

 Returns the number of the current thread

 int omp_get_num_threads()

 Returns the total number of threads currently 
participating in a parallel region

 Returns “1” if executed in a serial region

 For portability, surround these functions with 
#ifdef _OPENMP

 #include <omp.h>
Philip Blood ( Scientific Specialist 
)
Pittsburgh Supercomputing 
Center



Optimization: Scheduling

 OpenMP partitions workload into 
“chunks” for distribution among threads

 Default strategy is static:
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Optimization: Scheduling
 This strategy has the least amount of overhead

 However, if not all iterations take the same amount of 
time, this simple strategy will lead to load imbalance.
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Optimization: Scheduling

 OpenMP offers a variety of scheduling 
strategies:
 schedule(static,[chunksize])

 Divides workload into equal-sized chunks

 Default chunksize is Nwork/Nthreads

 Setting chunksize to less than this will result in chunks 
being assigned in an interleaved manner

 Lowest overhead

 Least optimal workload distribution
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Optimization: Scheduling

 schedule(dynamic,[chunksize])

 Dynamically assigned chunks to threads

 Default chunksize is 1

 Highest overhead

 Optimal workload distribution

 schedule(guided,[chunksize])

 Starts with big chunks proportional to (number of 
unassigned iterations)/(number of threads), then makes 
them progressively smaller until chunksize is reached

 Attempts to seek a balance between overhead and 
workload optimization
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Optimization: Scheduling

 schedule(runtime)

 Scheduling can be selected at runtime using 
OMP_SCHEDULE

 e.g. setenv OMP_SCHEDULE “guided, 100”

 In practice, often use:

 Default scheduling (static, large chunks)

 Guided with default chunksize

 Experiment with your code to determine 
optimal strategy
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What we have learned

 How to compile and run OpenMP progs

 Private vs. shared variables

 Critical sections and reductions for 
updating scalar shared variables

 Techniques for minimizing thread 
spawning/exiting overhead

 Different scheduling strategies
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Summary

 OpenMP is often the easiest way to achieve 
moderate parallelism on shared memory 
machines

 In practice, to achieve decent scaling, will 
probably need to invest some amount of 
effort in tuning your application.

 More information available at:
 https://computing.llnl.gov/tutorials/openMP/

 http://www.openmp.org

 Using OpenMP, MIT Press, 2008
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Processes, Threads, and Parallel 
Programming

 Process: is a program counter and address space.

 Thread: Threads have their own program counter 
and a memory stack, but share the other resources 
within the process.

 Shared memory uses thread as their milestone for 
parallel programming.

Supercomputing 2008 Education 
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OpenMP

 Portable API for shared memory      
thread-based parallelism

 C/C++ and Fortran

 “Fork-Join” model Fork

Join

Master 
thread

parall
el 

regio
n Master 

thread
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OpenMP Fundamentals
 Environment variables

export OMP_NUM_THREADS=“4”

 Library functions
omp_set_num_threads (4);

 Compiler directives (#pragmas)
#pragma omp parallel num_threads (4)
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OpenMP Programming
 Source code

#include “omp.h”

#pragma omp parallel

{

…parallel region

}

 Compiling
g++ -fopenmp filename.cc –o filename
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Directive Responsibility

 Work-sharing

 Data scoping

 Synchronization

 Scheduling
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OpenMP: Work Sharing

 Parallel region: partition work

 Each thread executes same code

 Parallel for loop: partition iterations

 Threads share iterations of loop

 Parallel section: functional parallelism

 Threads perform different tasks
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OpenMP: Data

 Shared: threads access a single copy of 
the data object

 Private: each thread gets volatile copy

 Firstprivate: initialized from master

 Lastprivate: master’s copy updated with 
last value of last thread
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Critical Section Problem

 Shared memory system  shared data

 Shared data  concurrent access

 Concurrent access  corrupted 

variables

 Critical section problem:  ensure 
“correct” access to shared data
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Data Corruption
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Concurrency Control

 Synchronization
 Mutex – ensures exclusive access to critical 

section of code

 Barrier – causes a group of threads to pause until 
all have reached a defined point

 Signalling
 Conditional Wait – waits for some event; signals 

when it occurs

 Broadcasting – signals a group of waiting threads
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Mutual Exclusion

// program code

“entry”

// access shared data

“exit”

// program code

Critical 
Section
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Barrier

Barrier
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Conditional Wait

thread
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thread
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wait

signal
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thread
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thread
_2
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Broadcast
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OpenMP: Scheduling

 Static: splits iteration space into blocks 
of size chunk

 Dynamic: assign blocks to threads as 
they become idle (uneven workloads)

 Guided: adjusts chunk-size 
exponentially until all assigned
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