
High Performance Distributed Computing

Chapter 1

Introduction: Basic Concepts

Objective of this chapter:

Chapter one will provide an introduction to the Distributed Systems and how to
characterize them. In addition, the chapter will describe the evolution of distributed
systems as well as the research challenges facing the design of general purpose high
performance distributed systems.

Key Terms
Complexity, Grid structure, High performance distributed system.

1.1 Introduction

The last two decades spawned a revolution in the world of computing, a move away from
central mainframe-based computing to network-based computing. Today, workstation
servers are quickly achieving the levels of CPU performance, memory capacity, and I/O
bandwidth once available only in mainframes at a cost order of magnitude below that of
mainframes. Workstations are being used to solve computationally intensive problems in
science and engineering that once belonged exclusively to the domain of supercomputers.
A distributed computing system is the system architecture that makes a collection of
heterogeneous computers or workstations to act and behave as being one single
computing system. In such a computing environment, users can uniformly access and
name local or remote resources, and run processes from anywhere in the system, without
being aware of which computers their processes are running on. Many claims have been
made for distributed computing systems. In fact, it is hard to rule out any desirable
feature of a computing system that has not been claimed to be offered by a distributed
system [Comer et al, 1991]. However, the recent advances in computing, networking and
software have made feasible to achieve the following advantages:

• Increased Performance: The existence of multiple computers in a distributed system
allows applications to be processed in parallel and thus improve the application and
system performance. For example, the performance of a file system can be improved by
replicating its functions over several computers; the file replication allows several
applications to access that file system in parallel. Also, file replication results in
distributing the network traffic to access that file over different sites and thus reduces
network contention and queuing delays.

• Sharing of Resources: Distributed systems enable efficient access for all the system
resources. Users can share special purpose and sometimes expensive hardware and

 1

High Performance Distributed Computing

software resources such as database server, compute server, virtual reality server,
multimedia information server and printer server, just to name a few.

• Increased Extendibility: Distributed systems can be designed to be modular and
adaptive so that for certain computations the system will configure itself to include a
large number of computers and resources while in other instances, it will just consist of a
few resources. Furthermore, the file system capacity and computing power can be
increased incrementally rather than throwing all the system resources to acquire higher
performance and capacity systems.

• Increased Reliability, Availability and Fault Tolerance: The existence of multiple
computing and storage resources in the distributed system makes it attractive and cost-
effective to introduce redundancy in order to improve the system dependability and fault-
tolerance. The system can tolerate the failure in one computer by allocating its tasks to
another available computer. Furthermore, by replicating system functions, the system can
tolerate one or more component failures.

• Cost-Effectiveness: The performance of computers have been improving by
approximately 50% per year while their cost is decreasing by half every year during the
last decade [Patterson and Hennessy, 1994]. Furthermore, the emerging high speed
optical network technology will make the development of distributed systems attractive
in terms of price/performance ratio when compared to those of parallel computers. The
cost-effectiveness of distributed systems has contributed significantly to the failure of the
supercomputer industry to dominate the high performance computing market.

These advantages or benefits can not be achieved easily because designing a general
purpose distributed computing system is several orders of magnitude more complex than
the design of centralized computing systems. The design of such systems is a
complicated process because of the many options that the designers must evaluate and
choose from such as the type of communication network and communication protocol,
the type of host-network interface, distributed system architecture (e.g., pool, client-
server, integrated, hybrid), the type of system level services to be supported (distributed
file service, transaction service, load balancing and scheduling, fault-tolerance, security,
etc.) and the type of distributed programming paradigms (e.g., data model, functional
model, message passing or distributed shared memory). Below is a list of the main issues
that must be addressed.

• Lack of good understanding of distributed computing theory. The field is relatively
new and to overcome that we need to experiment with and evaluate all possible
architectures to design general purpose reliable distributed systems. Our current approach
to design such systems is based on ad-hoc approach and we need to develop system-
engineering theory before we can master the design of such systems. Mullender
compared the design of a distributed system to the design of a reliable national railway
system that took a century and half to be fully understood and mature [Bagley, 1993].
Similarly, distributed systems (which have been around for approximately two decades)

 2

High Performance Distributed Computing

need to evolve into several generations of different design architectures before their
designs, structures and programming techniques can be fully understood and mature.

• The asynchronous and independence behavior of the computers complicate the
control software that aims at making them operate as one centralized computing system.
If the computers are structured in a master-slave relationship, the control software is
easier to develop and system behavior is more predictable. However, this structure is in
conflict with the distributed system property that requires computers to operate
independently and asynchronously.

• The use of a communication network to interconnect the computers introduces
another level of complexity; distributed system designers need not only to master the
design of the computing systems and their software systems, but also to master the design
of reliable communication networks, how to achieve efficient synchronization and
consistency among the system processes and applications, and how to handle faults in a
system composed of geographically dispersed heterogeneous computers. The number of
computers involved in the system can vary from a few to hundreds or even hundreds of
thousands of computers.

In spite of these difficulties, there has been a limited success in designing special purpose
distributed systems such as banking systems, on-line transaction systems, and point-of-
sale systems. However, the design of a general purpose reliable distributed system that
has the advantages of both centralized systems (accessibility, management, and
coherence) and networked systems (sharing, growth, cost, and autonomy) is still a
challenging task [Stankovic, 1984]. Klienrock [Tannenbaum, 1988] makes an interesting
analogy between the human-made computing systems and the brain. He points out that
the brain is organized and structured very differently from our present computing
machines. Nature has been extremely successful in implementing distributed systems
that are far cleverer and more impressive than any computing machines humans have yet
devised. We have succeeded in manufacturing highly complex devices capable of high-
speed computation and massive accurate memory, but we have not gained sufficient
understanding of distributed systems and distributed applications; our systems are still
highly constrained and rigid in their construction and behavior. The gap between natural
and man-made systems is huge and more research is required to bridge this gap and to
design better distributed systems.

 3

High Performance Distributed Computing

Figure 1.1 An Example of a Distributed Computing System.

The main objective of this book is to provide a comprehensive study of the design
principles and architectures of distributed computing systems. We first present a
distributed system design framework to provide a systematic design methodology for
distributed systems and their applications. Furthermore, the design framework
decompose the design issues into several layers to enable us to better understand the
architectural design issues and the available technologies to implement each component
of a distributed system. In addition to addressing the design issues and technologies for
distributed computing systems, we will also focus on those that will be viable to build the
next generations of wide area distributed systems (e.g. Grid and Autonomic computing
systems) as shown in Figure 1.1.

1.2 Characterization of Distributed Systems
Distributed systems have been referred to by many different names such as distributed
processing, distributed data processing, distributed multiple computer systems,
distributed database systems, network-based computing, cooperative computing, client-
server systems, and geographically distributed multiple computer systems [Hwang and
Briggs, 1984]. Bagely [Kung, 1992] has reported 50 different definitions of distributed
systems. Other researchers feel acceptable to have many different definitions for
distributed systems and even warren against having one single definition of a distributed
system [Liebowitz, and Carson, 1985; Bagley, 1993]. Furthermore, many different
methods have been proposed to define and characterize distributed computing systems
and distinguish them from other types of computing systems. In what follows, we present
the important characteristics and services that have been proposed to characterize and
classify distributed systems.

 4

High Performance Distributed Computing

• Logical Property. The distributed system is defined as a collection of logical units
that are physically connected through an agreeable protocol for executing distributed
programs [Liebowitz and Carson, 1985]. The logical notion allows the system
components to interact and communicate without knowing their physical locations in the
system.

• Distribution Property. This approach emphasizes the distribution feature of a
distributed system. The word “distributed” implies that something has been spread out or
scattered over a geographically dispersed area. At least four physical components of a
computing system can be distributed: 1) hardware or processing logic, 2) data, 3) the
processing itself, and 4) the control. However, a classification using only the distribution
property is not sufficient to define distributed systems and many existing computing
systems can satisfy this property. Consider a collection of terminals attached to a
mainframe or an I/O processor within a mainframe. A definition that is based solely on
the physical distribution of some components of the system does not capture the essence
of a distributed system. A proper definition must also take into consideration component
types and how they interact.

• Distributed System Components. Enslow [Comer, 1991] presents a “research and
development” definition of distributed systems that identifies five components of such a
system. First, the system has a multiplicity of general-purpose resource components,
including both hardware and software resources, that can be assigned to specific tasks on
a dynamic basis. Second, there is a physical distribution of the hardware and software
resources of the system that interact through a communications network. Third, a high-
level operating system that unifies and integrates the control of the distributed system.
Fourth, system transparency that permits services to be requested by name only. Lastly,
cooperative autonomy that characterizes the operation of both hardware and software
resources.

• Transparency Property. Other researchers emphasize the transparency property of
the system and the degree to which it looks like a single integrated system to users and
applications. Transparency is defined as the technique used to hide the separation from
both the users and the application programs so that the system is perceived as one single
system rather than a collection of computers. The transparency property is provided by
the software structure overlaying the distributed hardware. Tanenbaum and VanRenesse
used this property to define a distributed system as one that looks to its users like an
ordinary centralized system, but runs on multiple independent computers [Bagley, 1993;
Halsall, 1992] The authors of ANSA reference Manual [Borghoff, 1992] defined eight
different types of transparencies:

1. Access Transparency: This property allows local and remote files and other objects to
be accessed using the same set of operations.

2. Location Transparency: This property allows objects to be accessed without knowing
their physical locations.

 5

High Performance Distributed Computing

3. Concurrency Transparency: This property enables multiple users or distributed
applications to run concurrently without any conflict; the users do not need to write any
extra code to enable their applications to run concurrently in the system.

4. Replication Transparency: This property allows several copies of files and
computations to exist in order to increase reliability and performance. These replicas are
invisible to the users or application programs. The number of redundant copies can be
selected dynamically by the system, or the user could specify the required number of
replicas.

5. Failure Transparency: This property allows the system to continue its operation
correctly in spite of component failures; i.e. it enables users and distributed applications
to run for completion in spite some failures in hardware and/or software components
without modifying their programs.

6. Migration Transparency: This property allows system components (processes,
threads, applications, files, etc.) to move within the system without affecting the
operation of users or application programs. This migration is triggered by the system
software in order to improve system and/or application desired goals (e.g., performance,
fault tolerance, security).

7. Performance Transparency: This property provides the system with the ability to
dynamically balance its load and schedule the user applications (processes) in a
transparent manner to the users in order to optimize the system performance and/or
application performance.

8. Scaling Transparency: This property allows the system to be expanded or shirked
without changing the system structure or modifying the distributed applications
supported by the system.

In this book, we assume a distributed computing system resources might include a wide
range of computing resources such as workstations, PC's, minicomputers, mainframes,
supercomputers, and other special purpose hardware units. The underlying network
interconnecting the system resources can span LAN's, MAN's and even WAN's, can have
different topologies (e.g., bus, ring, full connectivity, random interconnect, etc.), and can
support a wide range of communication protocols. In high performance distributed
computing environments, computers communicate and cooperate with latency and
throughput comparable to that experienced in tightly coupled parallel computers. Based
on these properties, we define a distributed system as a networked (loosely coupled)
system of independent computing resources with adequate software structure to enable
the integrated use of these resources toward a common goal.

1.3 Evolution of Distributed Computing Systems

 6

High Performance Distributed Computing

Distributed computing systems have been evolving for more than two decades and this
evolution could be described in terms of four generations of distributed systems: Remote
Execution Systems (RES), Distributed Computing Systems (DCS), and High
Performance Distributed Systems (Grid computing systems), and Autonomic Computing.
Each generation can be distinguished by the type of computers, the communications
networks, the software environments and applications that are typically used in that
generation.

1.3.1 Remote Execution Systems (RES): First Generation

The first generation spans the 1970's era, a time when the first computer networks were
being developed. During this era, computers were large and expensive. Even
minicomputers would cost tens of thousands of dollars. As a result, most organizations
had only a handful of computers that were operated independently from one another and
were located in one centralized computing center. The computer network concepts were
first introduced around the mid 1970s and the initial computer network research was
funded by the federal government. For example, the Defense Advanced Research
Projects Agency (DARPA) has funded many pioneered research projects in packet
switching including the ARPANET. The ARPANET used conventional point-to-point
leased line interconnection. Experimental packet switching over radio networks and
satellite communication channels were also conducted during this period. The
transmission rate of the networks was slow (typically in the 2400 to 9600 bit per second
(bps) range). Most of the software available to the user for information exchange was in
providing the capability of terminal emulation and file transfer. Consequently, most of
the applications were limited to remote login capability, remote job execution and remote
data entry.

1.3.2 Distributed Computing Systems (DCS): Second Generation

This era spans approximately the 1980s, where significant advances occurred in the
computing, networking and software resources used to design distributed systems. In this
period, the computing technology introduced powerful microcomputer systems capable
of providing computing power comparable to that of minicomputers and even
mainframes at a much lower price. This made microcomputers attractive to design
distributed systems that have better performance, reliability, fault tolerance, and
scalability than centralized computing systems.

Likewise, network technology improved significantly during the 1980s. This was
demonstrated by the proliferation and the availability of high-speed local area networks
that were operating at 10 and 100 million bits per second (Mbps) (e.g., Ethernet and
FDDI). These systems allowed dozens, even hundreds, of computers that varied from
mainframes, minicomputers, and workstations to PCs to be connected such that
information could be transferred between machines in the millisecond range. The wide
area network’s speed was slower than LAN’ speed and it was in the 5600 bps to 1.54
Mbps range.

 7

High Performance Distributed Computing

During this period, most of the computer systems were running the Berkeley UNIX
operating system (referred to as the BSD UNIX) that was developed at the University of
California's Berkeley Software Distribution. The Berkeley software distribution became
popular because it was integrated with the Unix operating system and also offered more
than the basic TCP/IP protocols. For example, in addition to standard TCP/IP
applications (such as ftp, telnet, and mail), BSD UNIX offered a set of utilities to run
programs or copy files to or from remote computers as if they were local (e.g., rcp, rsh,
rexe.). Using the Berkeley socket, it was possible to build distributed application
programs that were running over several machines. However, the users had to be aware
of the activities on each machine; that is where each machine was located, and how to
communicate with it. No transparency or support was provided by the operating system;
the responsibility for creating, downloading and running the distributed application was
solely performed by the programmer.

However, between 1985-1990, a significant progress in distributed computing software
tools was achieved. In fact, many of the current message passing tools were introduced
during this period such as Parallel Virtual Machine (PVM) developed at Oak ridge
National Laboratory, ISIS developed by ISIS/Cornell University, Portable Programming
for Parallel Processing (P4), just to name a few. These tools have contributed
significantly to the widespread of distributed systems and their applications. With these
tools, a large number of specialized distributed systems and applications were deployed
in the office, medical, engineering, banking and military environments. These distributed
applications were commonly developed based on the client-server model.

1.3.3 High-Performance Distributed Systems: Third Generation

This generation will span the 19
90's, which will be the decade where parallel and distributed computing will be unified
into one computing environment that we refer to in this book as high performance
distributed system. The emergence of high-speed networks and the evolution of processor
technology and software tools will hasten the proliferation and the development of high
performance distributed systems and their applications.

The existing computing technology has introduced processor chips that are capable of
performing billions of floating point operations per second (Gigaflops) and are swiftly
moving towards the trillion floating point operation per second (Teraflops) goal. A
current parallel computer like the IBM ASCI White Pacific Computer at Lawrence
Livermore National Laboratory in California can computer 7 trillion math operations a
second. Comparable performance can now be achieved in high performance distributed
systems. For example, a Livermore cluster contains, 2,304 2.4-GHz Intel Pentium Xeon
processors have a theoretical peak speed of 11 trillion floating-point operations per
second. In HPDS environment, the computing resources will include several types of
computers (supercomputers, parallel computers, workstations and even PC's) that
collectively execute the computing tasks of one large-scale application.

 8

High Performance Distributed Computing

Similarly, the use of fiber optics in computer networks has stretched the transmission
rates from 64 Kilobit per second (Kbps) in the 1970s to over 100 Giga bit per second
(Gbps) as shown in Figure 1.2. Consequently, this has resulted in a significant reduction
in the transmission time of data between computers. For example, it took 80 seconds to
transmit a 1 Kbyte data over a 100 Kbps network, but it now takes only 8 milliseconds to
transmit the same sized data over a 1 Gbps network. Furthermore, the current movement
towards the standardization of terabit networks will make high-speed networks attractive
in the development of high performance distributed systems.

Ethernet

Token Rings

FDDI,DQDB

Gigabit Networks

1980 1985 1990

10

100

1000

Network
Bandwidth
(Mbit/sec)

2000 2002

10000

2003 and beyond

1 Tbit/sec

Terabit network

DWDM

Figure1.2 Evolution of network technology

The software tools used to develop HPDS applications make the underlying computing
resources, whether they are parallel or distributed, transparent to the application
developers. The same parallel application can run without any code modification in
HPDS. Software tools generally fall into three groups on the basis of the service they
provide to the programmer. The first class attempts to hide the parallelism from the user
completely. These systems consist of parallelizing and vectorizing compilers that exploit
the parallelism presented by loops and have been developed mainly for vector computers.
The second approach uses shared memory constructs as a means for applications to
interact and collaborate in parallel. The third class requires the user to explicitly write
parallel programs by message passing. During this period, many tools have been
developed to assist the users developing parallel and distributed applications at each
stage of the software development life cycle. For each stage, there exist some tools to
assist the users with the activities of that stage.

The potential application examples cover parallel and distributed computing, national
multimedia information server (e.g., national or international multimedia yellow pages
server), video-on-demand and computer imaging, just to name a few [Reed, and
Fujimoto, 1987]. The critical performance criteria for the real-time distributed
applications require extremely high bandwidth and strict requirements on the magnitude
and variance of network delay. Another important class of applications that require high
performance distributed systems is the National Grand Challenge problems. These

 9

High Performance Distributed Computing

problems are characterized by massive data sets and complex operations that exceed the
capacity of current supercomputers. Figure 1.3 shows the computing and storage
requirements for the candidate applications for high performance distributed systems.

3D Plasma
Modeling

72-Hour
Weather

Vehicle
signature

Chemical Dynamics

Pharmaceutical
Design

Structural
Biology

1991 1993 1995

100 MB

1 GB

10 GB

100 GB

1000 GB

Global change
Human Genome
Fluid Turbulence
vehicle Dynamics
Ocean Circulation
Viscous Fluid Dynamics
Superconductor modeling
Semiconductor Modeling
Quantum Chromodynamics
Vision

10 Gflops 100 Gflops 1 Tflops

System Speed

Memory Capacity

2002

50 Tflops 256-1000

2005-2009

Neuro-science
applications

12.3TB

16TB

2000

12Tflops

8TB

Governmental filling
3D forging/welding

1997

Micro aging

Nuclear
applications

3D micro-
structure

Component
deterioration model

Prototype 3D
physics

Crash/fire safety

8Tflop

Figure 1.3 Computing and Storage Requirements of HPDS Applications

1.3.3 Autonomic Computing Systems: Fourth Generation
The autonomic computing concept was introduced in the early 2000 by IBM
[www.research.ibm.com/autonomic]. The basic approach is to build computing systems
that are capable of managing themselves; that can anticipate their workloads and adapt
their resources to optimize their performance. This approach has been inspired by the
human autonomic nervous system that has the ability to self-configure, self-tune and even
repair himself without any human conscience involvement. The resources of autonomic
systems include a wide range of computing systems, wireless and Internet devices. The
applications cover a wide range of applications that touch all aspects of our life such as
education, business, government and defense. The field is still in its infancy and it is
expected to play an important role in defining the next era of computing.

 10

High Performance Distributed Computing

Table 1.1 summarizes the main features that characterize computing and network
resources, the software support, and applications associated with each distributed system
generation.

Table 1.1 Evolutions of Distributed Computing Systems

Distributed System
Generation

Computing resources Networking resources Software/ Application

Remote Execution
Systems (RES)

Mainframe,
Minicomputers;
Centralized;
Few and expensive

Packet switched
networks; Slow WAN
(2400-9600bps); Few
networks

Terminal emulation;
Remote login;
Remote data entry

Distributed
Computing Systems
(DCS)

Workstation & PCs
Mainframe,
Minicomputers;
Distributed;
 Not expensive

Fast LANs & MANs,
100Mbps, FDDI,
DQDB, ATM;
Fast WANs (1.5Mbps)
Large number

Network File Systems
(NFS);
Message-passing tools
(PVM,P4 ,ISIS);
On-line transaction
systems
-Airline reservation, -
online Banking

High-performance
Distributed Systems
(HPDC)

Workstations & PCs;
Parallel/super
computers;
Fully distributed
Explosive number

High-speed LANs,
MANs, WANs;
ATM, Gigabit Ethernet;
Explosive number

Fluid turbulence;
Climate modeling;
Video-On-Demand;
Parallel/Distributed
Computing

Autonomic
Computing

Computers of all types
(PCs, Workstations,
Parallel/supercomputers
), cellular phone and
Internet devices

High-speed LANs,
MANs, WANs;
ATM, Gigabit Ethernet;
wireless and mobile
networks

Business applications,
Internet services,
scientific, medical and
engineering applications,

1.4 Promises and Challenges of High Performance Distributed Systems

The proliferation of high performance workstations and the emergence of high-speed
networks (Terrabit networks) have attracted a lot of interest in high performance
distributed computing. The driving forces towards this end will be (1) the advances in
processing technology, (2) the availability of high speed networks and (3) the increased
research directed towards the development of software support and programming
environments for distributed computing. Further, with the increasing requirements for
computing power and the diversity in the computing requirements, it is apparent that no
single computing platform will meet all these requirements. Consequently, future
computing environments need to adaptively and effectively utilize the existing
heterogeneous computing resources. Only high performance distributed systems provide
the potential of achieving such an integration of resources and technologies in a feasible
manner while retaining desired usability and flexibility. Realization of this potential
requires advances on a number of fronts-- processing technology, network technology
and software tools and environments.

 11

High Performance Distributed Computing

1.4.1 Processing Technology

Distributed computing relies to a large extent on the processing power of the individual
nodes of the network. Microprocessor performance has been growing at a rate of 35--70
percent during the last decade, and this trend shows no indication of slowing down in the
current decade. The enormous power of the future generations of microprocessors,
however, cannot be utilized without corresponding improvements in the memory and I/O
systems. Research in main-memory technologies, high-performance disk-arrays, and
high-speed I/O channels are therefore, critical to utilize efficiently the advances in
processing technology and the development of cost-effective high performance
distributed computing.

1.4.2 Networking Technology

The performance of distributed algorithms depends to a large extent on the bandwidth
and latency of communication among the network nodes. Achieving high bandwidth and
low latency involves not only fast hardware, but also efficient communication protocols
that minimize the software overhead. Developments in high-speed networks will, in the
future, provide gigabit bandwidths over local area networks as well as wide area
networks at a moderate cost, and thus increasing the geographical scope of high
performance distributed systems.

The problem of providing the required communication bandwidth for distributed
computational algorithms is now relatively easy to solve, given the mature state of fiber-
optics and opto-electronic device technologies. Achieving the low latencies necessary,
however, remains a challenge. Reducing latency requires progress on a number of fronts:
First, current communication protocols do not scale well to a high-speed environment.
To keep latencies low, it is desirable to execute the entire protocol stack, up to the
transport layer, in hardware. Second, the communication interface of the operating
system must be streamlined to allow direct transfer of data from the network interface to
the memory space of the application program. Finally, the speed of light (approximately
5 microseconds per kilometer) poses the ultimate limit to latency.

In general, achieving low latency requires a two-pronged approach:

1. Latency Reduction: Minimize protocol-processing overhead by using streamlined
protocols executed in hardware and by improving the network interface of the operating
system.

2. Latency Hiding: Modify the computational algorithm to hide latency by pipelining
communication and computation.

These problems are now perhaps most fundamental to the success of high-performance
distributed computing, a fact that is increasingly being recognized by the research
community.

 12

High Performance Distributed Computing

1.4.3 Software Tools and Environments

The development of high performance distributed applications is a non-trivial process
and requires a thorough understanding of the application and the architecture. Although,
an HPDS provides the user with enormous computing power and a great deal of
flexibility, this flexibility implies increased degrees of freedom which have to be
optimized in-order to fully exploit the benefits of the distributed system. For example,
during software development, the developer is required to select the optimal hardware
configuration for the particular application, the best decomposition of the problem on the
selected hardware configuration, the best communication and synchronization strategy to
be used, etc. The set of reasonable alternatives that have to be evaluated in such an
environment that is very large and selecting the best alternative among these is a non-
trivial task. Consequently, there is a need for a set of simple and portable software
development tools which can assist the developer in appropriately distributing the
application computations to make efficient use of the underlying computing resources.
Such a set of tools should span the software life-cycle and must support the developer
during each stage of application development starting from the specification and design
formulation stages through the programming, mapping, distribution, scheduling phases,
tuning and debugging stages up to the evaluation and maintenance stages.

1.5 Summary

Distributed systems applications and deployment have been growing at a fast pace to
cover many fields, such as education, industry, finance, medicine and military.
Distributed systems have the potential to offer many benefits when compared to
centralized computing systems that include increased performance, reliability and fault
tolerance, extensibility, cost-effectiveness, and scalability. However, designing
distributed systems is more complex than designing a centralized system because of the
asynchronous behavior and the complex interaction of their components, heterogeneity,
and the use of communication network for their information exchange and interactions.
Distributed systems provide designers with many options to choose from and poor
designs might lead to poorer performance than centralized systems.

Many researchers have studied distributed systems and used different names and features
to characterize them. Some researchers used the logical unit concept to organize and
characterize distributed systems, while others used multiplicity, distribution, or
transparency. However, there is a growing consensus to define a distributed system as a
collection of resources and/or services that are interconnected by a communication
network and these resources and services collaborate to provide an integrated solution to
an application or a service.

Distributed systems have been around for approximately three decades and have been
evolving since their inception in the 1970s. One can describe their evolution in terms of

 13

High Performance Distributed Computing

four generations: Remote Execution Systems, Distributed Computing Systems, High
Performance Distributed Systems, and Autonomic Computing. Autonomic Computing
Systems and High performance distributed systems will be the focus of this book. They
utilize efficiently and adaptively a wide range of heterogeneous computing resources,
networks and software tools and environments. . These systems will change their
computing environment dynamically to provide the computing, storage, and connectivity
for large scale applications encountered in business, finance, health care, scientific and
engineering fields.

1.6 PROBLEMS

1. Many claims have been attributed to distributed systems since their inception.

Enumerate all these claims and then explain which of these claims can be achieved
using the current technology and which ones will be achieved in the near future, and
which will not be possible at all.

2. What are the features or services that could be used to define and characterize any

computing system? Use these features or properties to compare and contrast the
computing systems built on the basis of
• Single operating system in a parallel computer
• Network operating system
• Distributed system
• High performance distributed system.

3. Describe the main advantages and disadvantages of distributed systems when they are

compared with centralized computing systems.

4. Why is it difficult to design general-purpose reliable distributed systems?

5. What are the main driving forces toward the development of high performance

distributed computing environment. Describe four classes of applications that will be
enabled by high performance distributed systems. Explain why these applications
could not run on second-generation distributed systems.

6. What are the main differences between distributed systems and high performance

distributed systems?

7. Investigate the evolution of distributed systems and study their characteristics and

applications. Based on this study, can you identify the types of applications and any
additional features associated with each generation of distributed systems as
discussed in Section 3?

8. What are the main challenges facing the design and development of large-scale high

performance distributed systems that have 100,000 of resources and/or services?

 14

High Performance Distributed Computing

Discuss any potential techniques and technologies that can be used to address these
challenges.

 15

High Performance Distributed Computing

References

1. Mullender, S., Distributed Systems, First Edition, Addison-Wesley, 1989.

2. Mullender, S., Distributed Systems, Second Edition, Addison-Wesley, 1993.

3. Patterson and J. Hennessy, Computer Organization Design: the hardware/software

interface, Morgan Kaufamm Publishers, 1994.

4. Liebowitz B.H., and Carson, J.H., ``Multiple Processor Systems for Real-Time

Applications'', Prentice-Hall, 1985.

5. Umar, A., Distributed Computing, PTR Prentice-Hall, 1993.

6. Enslow, P.H., “What is a “Distributed”Data Processing System?”, IEEE Computer,

January 1978.

7. Kleinrock, L., ``Distributed Systems'', Communications of the ACM, November

1985.

8. Lorin, H., ``Aspects of Distributed Computer Systems'', John-Wiley and Sons, 1980.

9. Tannenbaum, A.S., Modern Operating Systems, Prentice-Hall, 1992.

10. ANSA 1997, ANSA Reference Mnaual Release 0.03 (Draft), Alvey Advanced

Network Systems Architectures Project, 24 Hills Road, Cambridge CB2 1JP, UK.

11. Bell, G.,``Ultracomputer A Teraflop Before its Time'', Communications of the ACM,

pp 27-47, August 1992.

12. Geist, A., ``PVM 3 User's Guide and Reference Manual'', Oak Ridge National

Laboratory, 1993.

13. Birman, K. K. Marzullo, ``ISIS and the META Project'', Sun Technology, Summer

1989.

14. Birman, K., et al ISIS User Guide and Reference Manual, Isis Distributed Systems,

Inc, 111 South Cayuga St., Ithaca NY, 1992.

15. Spragins, J.D., Hammond, J.L., and Pawlikowski, K., ``Telecommunications

Protocols and Design'', Addison Wesley, 1991.

 16

High Performance Distributed Computing

16. McGlynn, D.R., ``Distributed Processing and Data Communications'', John Wiley
and Sons, 1978.

17. Tashenberg, C.B., ``Design and Implementation of Distributed-Processing Systems'',

American Management Associations, 1984.

18. Hwang, K., and Briggs, F.A., ``Computer Architecture and Parallel Processing'',

McGraw-Hill, 1984.

19. Halsall, F., Data Communications, Computer Networks and Open Systems'', Third

Edition, Addison-Wesley, 1992.

20. Danthine, A., and Spaniol, O., ``High Performance Networking, IV'', International

Federation for Information Processing, 1992.

21. Borghoff, U.M., ``Catalog of Distributed File/Operating Systems'', Springer-Verlag,

1992.

22. LaPorta, T.F., and Schwartz, M., ``Architectures, Features, and Implmentations of

High-Speed Transport Protocols'', IEEE Network Magazine'', May 1991.

23. Kung, H.T., ``Gigabit Local Area Networks: A systems perspective'', ``IEEE

Communications Magazine'', April 1992.

24. Comer, D.E., Internetworking with TCP/IP, Volume I, Prentice-Hall. 1991.

25. Tannenbaum, A.S., Computer Networks Prentice-Hall, 1988.

26. Coulouris, G.F., Dollimore, J., Distributed Systems: Concepts and Design, Addison-

Wesley, 1988.

27. Bagley, ``Dont't have this one'', October 1993.

28. Stankovic, J.A., ``A Perspective on Distributed Computer Systems'', IEEE

Transactions on Computers, December 1984.

29. Andrews, G., ``Paradigms for Interaction in Distributed Programs'', Computing

Surveys, March 1991.

30. Chin, R. S. Chanson, ``Distributed Object Based Programming Systems'', Computing

Surveys, March 1991.

31. The Random House College Dictionary, Random House, 1975.

32. Shatz, S., Development of Distributed Software, Macmillan, 1993.

 17

High Performance Distributed Computing

 18

33. Jain, N. and Schwartz, M. and Bashkow, T. R., ``Transport Protocol Processing at
GBPS Rates'', Proceedings of the SIGCOMM Symposium on Communication
Architecture and Protocols, August 1990.

34. Reed, D.A., and Fujimoto, R.M., ``Multicomputer Networks Message-Based Parallel

Processing'', MIT Press, 1987.

35. Maurice, J.B., ``The Design and Implementation of the UNIX Operating System'',

Prentice-Hall, 1986.

36. Ross, `` An overview of FDDI: The Fiber Distributed Data Interface,'' IEEE Journal

on Selected Areas in Communications, pp. 1043--1051, September 1989.

	Chapter 1
	Introduction: Basic Concepts
	Objective of this chapter:
	Key Terms
	1.1 Introduction
	1.2 Characterization of Distributed Systems
	1.3 Evolution of Distributed Computing Systems
	1.3.1 Remote Execution Systems (RES): First Generation
	1.3.2 Distributed Computing Systems (DCS): Second Generation
	1.3.3 High-Performance Distributed Systems: Third Generation
	Figure1.2 Evolution of network technology
	Figure 1.3 Computing and Storage Requirements of HPDS Applications

	1.3.3 Autonomic Computing Systems: Fourth Generation
	Table 1.1 Evolutions of Distributed Computing Systems

	1.4 Promises and Challenges of High Performance Distributed Systems
	1.4.1 Processing Technology
	1.4.2 Networking Technology
	1.4.3 Software Tools and Environments

	1.5 Summary
	1.6 PROBLEMS
	References

