
 High Performance Distributed Systems

 1

Chapter 2

Distributed System Design Framework

 Objective of this chapter:

 Chapter two will present a design methodology model of distributed systems
to simplify the design and the development of such systems. In addition, we
provide an overview of all the design issues and technologies that can be used
to build distributed systems.

Key Terms

Network, protocol, interface, Distributed system design, WAN, MAN, LAN, LPN,
DAN, Circuit switching, Packet Switching, Message Switching, Server Model, Pool
Model, Integrated Model, Hybrid Model.

2.1 Introduction
In Chapter 1, we have reviewed the main characteristics and services provided by distributed
systems and their evolution. It is clear from the previous chapter that there are a lot of confusions
on what constitute a distributed system, its main characteristics and services, and their designs. In
this chapter, we present a framework that can be used to identify the design principles and the
technologies to implement the components of any distributed computing system. We refer to this
framework as the Distributed System Design Model (DSDM). Generally speaking, the design
process of a distributed system involves three main activities: 1) designing the communication
network that enables the distributed system computers to exchange information, 2) defining the
system structure (architecture) and the services that enable multiple computers to act and behalf as
a system rather than a collection of computers, and 3) defining the distributed programming
techniques to develop distributed applications. Based on this notion of the design process, the
Distributed System Design Model can be described in terms of three layers: (see Figure 2.1): 1)
Network, Protocol, and Interface (NPI) layer; 2) System Architecture and Services (SAS) layer;
and 3) Distributed Computing Paradigms (DCP) layer. In this chapter, we describe the
functionality and the design issues that must be taken into consideration during the design and
implementation of each layer. Furthermore, we organize the book chapters into three parts where
each part corresponds to one layer in the DSDM.

 High Performance Distributed Systems

 2

D istributed C om puting Paradigm s

C om putation M odels C om m unication M odels

Functional Parallel D ata Parallel M essage Passing Shared M em ory

System A rchitecture and Services (SA S)

A rchitecture M odels System Level Services

N etw ork, Protocol and Interface

N etw ork N etw orks C om m unication Protocols

Figure 2.1. Distributed System Design Model.

The communication network, protocol and interface (NPI) layer describes the main
components of the communication system that will be used for passing control and
information among the distributed system resources. This layer is decomposed into
three sub-layers: Network Types, Communication Protocols, and Network
Interfaces.

The distributed system architecture and service layer (SAS) defines the architecture
and the system services (distributed file system, concurrency control, redundancy
management, load sharing and balancing, security service, etc.) that must be
supported and supported in order for the distributed system to behave and function
as if it were a single image computing system.

The distributed computing paradigms (DCP) layer represents the programmer (user)
perception of the distributed system. This layer focuses on the programming
paradigms that can be used to develop distributed applications. Distributed
computing paradigms can be broadly characterized based on the computation and
communication models. Parallel and distributed computations can be described in
terms of two paradigms: Functional Parallel and Data Parallel paradigms. In
functional parallel paradigm, the computations are assigned to different computers.
In data parallel paradigm, all the computers perform the same functions, Same
Program Multiple Data Stream (SPMD), but each function operates on different
data streams. One can also characterize parallel and distributed computing based on
the techniques used for inter-task communications into two main models: Message
Passing and Distributed Shared Memory models. In message passing paradigm,
tasks communicate with each other by messages, while in distributed shared
memory they communicate by reading/writing to a global shared address space.

In the following subsections, we describe the design issues and technologies
associated with each layer in the DSDM.

 High Performance Distributed Systems

 3

2.2 Network, Protocol and Interface

The first layer (from the bottom-up) in the distributed system design model
addresses the issues related to designing the computer network, communications
protocols, and host interfaces. The communication system represents the underlying
infrastructure used to exchange data and control information among the logical and
physical resources of the distributed system. Consequently, the performance and the
reliability of distributed system depend heavily on the performance and reliability
of the communication system.

Traditionally distributed computing systems have relied entirely on local area
networks to implement the communication system. Wide area networks were not
considered seriously because of their high-latency and low-bandwidth. However,
the current emerging technology has changed that completely. Currently, the WAN
operate at Terabit per second transmission rates (Tbps) as shown in Figure 1.2.

A communication system can be viewed as a collection of physical and logical
components that jointly perform the communication tasks. The physical
components (network devices) transfer data between the host memory and the
communication medium. The logical components provide services for message
assembly and/or de-assembly, buffering, formatting, routing and error checking.
Consequently, the design of a communication system involves defining the
resources required to implement the functions associated with each component. The
physical components determine the type of computer network to be used (LAN's,
MAN's, WAN's), type of network topology (fully connected, bus, tree, ring,
mixture, and random), and the type of communication medium (twisted pair,
coaxial cables, fiber optics, wireless, and satellite), and how the host accesses the
network resources. The logical components determine the type of communication
services (packet switching, message switching, circuit switching), type of
information (data, voice, facsimile, image and video), management techniques
(centralized and/or distributed), and type of communication protocols.

The NPI layer discusses the design issues and network technologies available to
implement the communication system components using three sub-layers: 1)
Network Type that discusses the design issues related to implement the physical
computer network, 2) Communications Protocols that discusses communication
protocols designs and their impact on distributed system performance, and 3) Host
Network Interface that discusses the design issues and techniques to implement
computer network interfaces.

2.2.1 Network Type

A computer network is essentially any system that provides communication
between two or more computers. These computers can be in the same room, or can
be separated by several thousands of miles. Computer networks that span large
geographical distances are fundamentally different from those that span short

 High Performance Distributed Systems

 4

distances. To help characterize the differences in capacity and intended use,
communications networks are generally classified according to the distance into
five categories: 1) Wide Area Network (WAN), 2) Metropolitan Area Network
(MAN), 3) Local Area Network (LAN), 4) Local Peripheral Network (LPN), and 5)
Desktop Area Network (DAN).

Wide area networks (WANs): WANs are intended for use over large distances that
could include several national and international private and/or public data networks.
There are two types of WANs: Packet switched and Circuit Switched networks.
WANs used to operate at slower speeds (e.g., 1.54 Mbps) than LAN technologies
and have high propagation delays. However, the recent advances in fiber optical
technology, wavelength division multiplexing technology and the wide deployment
of fiber optics to implement the backbone network infrastructure have made their
transmission rates higher than the transmission rates of LANs. In fact, it is now
approaching Pita transmission rates (Pbps).

Metropolitan area networks (MANs): MANs span intermediate distances and
operate at medium-to-high speeds. As the name implies, a MAN can span a large
metropolitan area and may or may not use the services of telecommunications
carriers. MANs introduce less propagation delay than WANs and their transmission
rates range from 56Kbps to 100 Mbps.

Local area networks (LANs): LANs normally used to interconnect computers and
different types of data terminal equipment within a single building or a group of
buildings or a campus area. LANs provide the highest speed connections (e.g., 100
Mbps, 1 Gbps) between computers because it covers short distances than those
covered by WANs and MANs. Most LANs use a broadcast communication medium
where each packet is transmitted to all the computers in the network.

Local peripheral networks (LPNs): LPNs can be viewed as special types of LANs
[Tolmie and Tanlawy, 1994; Stallings et al, 1994] and it covers an area of a room or
a laboratory. LPN is mainly used to connect all the peripheral devices (disk drives,
tape drives, etc.) with the computers located in that room or laboratory.
Traditionally, input/output devices are confined to one computer system. However,
the use of high speed networking standards (e.g., HIPPI and Fiber Channels) to
implement LPNs has enabled the remote access to the input/output devices.

Desktop area networks (DANs): DAN is another interesting concept that aims at
replacing the proprietary bus within a computer by a standard network to connect
all the components (memory, network adapter, camera, video adapter, sound
adapter, etc.) using a standard network. The DAN concept is becoming even more
important with the latest development in palm computing devices; the palm
computers do not need to have huge amount of memory, sound/video capabilities,
all these can be taken from the servers that can be connected to the palm devices
using a high speed communication link.

 High Performance Distributed Systems

 5

Network Topology

The topology of a computer network can be divided into five types: bus, ring, hub,
fully connected and random as shown in Figure 2.2.

a . B U S N e tw o rk
b . R IN G N e tw o rk

c . H u b -b a se d N e tw o rk

sw itc h

d . F u lly c o n n e c te d

e . R a n d o m

s w itc h

 Figure 2.2 Different Types of Network Topologies
In a bus-based network, the bus is time-shared among the computers connected to
the bus. The control of the bus is either centralized or distributed. The main
limitation of the bus topology is its scalability; when the number of computers
sharing the bus becomes large, the contention increases significantly that lead to
unacceptable communication delays. In a ring network, the computers are
connected using point-to-point communication links that form a closed loop. The
main advantages of the ring topology include simplified routing scheme, fast
connection setup, a cost proportional to the number of interfaces, and provide high
throughput [Weitzman, 1980; Halsall, 1992]. However, the main limitation of the
ring topology is its reliability, which can be improved by using double rings. In a
hub-based or switched-based network, there is one central routing switch that
connects an incoming message on one of its input links to its destination through
one of the switch output links. This topology can be made hierarchical where a
slave switch can act as a master switch for another cluster and so on. With the rapid
deployment of switched-based networks (e.g., Gigabit Ethernet), this topology is
expected to play an important role in designing high performance distributed
systems. In fully connected network, every computer can reach any other computer
in one hob. However, the cost is prohibitively especially when the number of
computers to be connected is large. The Random network is a type of network

 High Performance Distributed Systems

 6

topology that is a combination of the other types that will lead to an ad-hoc
topology.

Network Service

Computer networks can also be classified according to the switching mechanism
used to transfer data within the network. These switching mechanisms can be
divided into three basic types: Circuit switching, Message switching and Packet
switching.

Circuit Switching: Conceptually, circuit switching is similar to the service offered
by telephony networks. The communication service is performed in three phases:
connection setup, data transmission, and connection release. Circuit-switched
connections are reliable and deliver data in the order it was sent. The main
advantage of circuit switching is its guaranteed capacity; once the circuit is
established, no other network activity is allowed to interfere with the transmission
activity and thus can not decrease the capacity of the circuit. However, the
disadvantage of Circuit switching is the cost associated with circuit setup and
release and the low utilization of network resources.

Message Switching: In a message switching system, the entire message is
transmitted along a predetermined path between source and destination computers.
The message moves in a store-and-forward manner from one computer to another
until it reaches its destination. The message size is not fixed and it could vary from
few kilobytes to several megabytes. Consequently, the intermediate communication
nodes should have enough storage capacity to store the entire message as being
routed to its destination. Message switching could result in long delays when the
network traffic is heavy and consist of many long messages. Furthermore, the
resource utilization is inefficient and it provides limited flexibility to adjust to
fluctuations in network conditions [Weitzman, 1980].

Packet Switching: In this approach, messages are divided into small fixed size
pieces, called packets that are multiplexed onto the communications links. A
packet, which usually contains only a few hundred bytes of data, is divided into two
parts: data and header parts. The header part carries routing and control
information that is used to identify the source computer, packet type, and the
destination computer; this service is similar to the postal service. Users place mail
packages (packets) into the network nodes (mailboxes) that identify the source and
the destination of the package. The postal workers then use whatever paths they
deem appropriate to deliver the package. The actual path traveled by the package is
not guaranteed. Like the postal service, a packet-switched network uses best-effort
delivery. Consequently, there is no guarantee that the packet will ever be delivered.
Also there are typically several intermediate nodes between the source and the
destination that will store and forward the packets. As a result the packets sent from
one source may not take the same route to the destination, nor may they be
delivered in the same transmission order, and they may be duplicated. The main

 High Performance Distributed Systems

 7

advantage of Packet switching is that the communication links are shared by all the
network computers and thus improve the utilization of the network resources. The
disadvantage is that as network activity increases, each machine sharing the
connection receives less of the total connection capacity, which results in a slower
communication rate. Furthermore, there is no guarantee that the packets will be
received in the same order of their transmission or without any error or duplication.

The main difference between circuit switching and packet switching is that in
circuit switching there is no need for intermediate network buffer. Circuit switching
provides a fast technique to transmit large data, while packet switching is useful to
transmit small data blocks between a random number of geographically dispersed
users. Another variation of these services is the virtual circuit switching which
combines both packet and circuit switching in its service. The communication is
done by first establishing the connection, transferring data, and finally
disconnecting the connection. However, during the transmission phase, the data is
transferred as small packets with headers that define only the virtual circuit these
packets are using. In this service, we have the advantages of both circuit switching
and packet switching. In fact, the virtual circuit switching is the service adopted in
ATM networks where packets are referred to as cells as will be discussed later in
Chapter 3.

2.2.2 Communication Protocols

A protocol is a set of precisely defined rules and conventions for communication
between two parties. A communication protocol defines the rules and conventions
that will be used by two or more computers on the network to exchange
information. In order to manage the complexity of the communication software, a
hierarchy of software layers is commonly used for its implementation. Each layer of
the hierarchy is responsible for a well-defined set of functions that can be
implemented by a specific set of protocols. The Open Systems Interconnection
(OSI) reference model, which is proposed by the International Standards
Organization (ISO), has seven layers as shown in Figure 2.3. In what follows, we
briefly describe the functions of each layer of the OSI reference model from the
bottom-up [Jain, 1993].

 High Performance Distributed Systems

 8

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

Application
Component

Transport
Component

Network
Component

 Figure 2.3 The OSI reference model

Physical Layer: It is concerned with transmitting raw bits over a communication
channel. Physical layer recognizes only individual bits and cannot recognize
characters or multi-character frames. The design issues here largely deal with
mechanical, electrical, procedural interfaces and physical transmission medium.
The physical layer consists of the hardware that transmits sequences of binary data
by analog or digital signaling and using either electric signals, light signals or
electro-magnetic signals.

Data Link Layer: It defines the functional and procedural methods to transfer data
between two neighboring communication nodes. This layer includes mechanisms to
deliver data reliably between two adjacent nodes, group bits into frames and to
synchronize the data transfer in order to limit the flow of bits from the physical
layer. In local area networks, the data link layer is divided into two sublayers: the
medium access control (MAC) sub-layer, which defines how to share the single
physical transmission medium among multiple computers and the logical link
control (LLC) sub-layer that defines the protocol to be used to achieve error control
and flow control. LLC protocols can be either bit or character based protocols.
However, most of the networks use bit-oriented protocols [Tanenbaum, 1988].

Network Layer: The network layer addresses the routing scheme to deliver packets
from the source to the destination. This routing scheme can be either static (the
routing path is determined a priori) or dynamic (the routing path is determined
based on network conditions). Furthermore, this layer provides techniques to
prevent and remove congestion once it occurs in the network; congestion occurs
when some nodes receive more packets than they can process and route. In wide
area networks, where the source and destination computers could be interconnected
by different types of networks, the network layer is responsible for internetworking;
that is converting the packets from one network format to another. In a single local
area network with broadcast medium, the network layer is redundant and can be

 High Performance Distributed Systems

 9

eliminated since packets can be transmitted from any computer to any other
computer by just one hop [Coulouris and Dollimore, 1988]. In general, the network
layer provides two types of services to the transport layer: connection-oriented and
connectionless services. The connection oriented service uses circuit switching
while the connectionless service uses the packet switching technique.

Transport Layer: It is an end-to-end layer that allows two processes running on two
remote computers to exchange information. The transport layer provides to the
higher-level processes efficient, reliable and cost-effective communication services.
These services allow the higher level layers to be developed independent of the
underlying network-technology layers. The transport layer has several critical
functions related to achieving reliable data delivery to the higher layer such as
detecting and correcting erroneous packets, delivering packets in order, and
providing a flow control mechanism. Depending on the type of computer network
being used, achieving these functions may or may not be trivial. For instance,
operating over a packet-switching network with widely varying inter-packet delays
presents a challenging task for efficiently delivering ordered data packets to the
user; in this network, packets will experience excessive delays that makes decision
on the cause of the delay a very difficult task. The delay could be caused by a
network failure or by the network being congested. The transport protocol’s task is
to resolve this issue that could be by itself a time consuming task.

The session, presentation and application layers form the upper three layers in the
OSI reference model. In contrast to the lower four layers, which are concerned with
providing reliable end-to-end communication, the upper layers are concerned with
providing user-oriented services. They take error-free channel provided by the
transport layer, and add additional features that are useful to a wide variety of user
applications.

Session Layer: It provides mechanisms for organizing and structuring dialogues
between application layer processes. For example, the user can select the type of
synchronization and control needed for a session such as alternate two-way or
simultaneous operations, establishment of major and/or minor synchronization
points and techniques for starting data exchange.

Presentation Layer: The main task of this layer focuses on the syntax to be used for
representing data; it is not concerned with the semantics of the data. For example, if
the two communicating computers use different data representation schemes, this
layer task is then to transform data from the formats used in the source computer
into a standard data format before transmission. At the destination computer, the
received data is transformed from the standard format to the format used by the
destination computer. Data compression and encryption for network security are
issues of this layer as well [Tanenbaum, 1988; Coulouris and Dollimore, 1988].

Application Layer: This layer supports end-user application processes. This layer
contains service elements (protocols) to support application processes such as job

 High Performance Distributed Systems

 10

management function, file transfer protocol, mail service, programming language
support, virtual terminal, virtual file system, just to name a few.

2.2.3 Network Interfaces

The main function of host-network interface is to transmit data from the host to the
network and deliver the data received from the network to the host. Consequently,
The host-network interface interacts with upper layer software to perform functions
related to message assembly and de-assembly, formatting, routing and error
checking. With the advances in processing and memory technology, these
communication functions can now be implemented in the hardware of the network
interface. A tradeoff is usually made regarding how these functions are going to be
distributed between the host and the network interface. The more functions
allocated to the network interface, the fewer loads imposed on the host to perform
the communication functions; however, the cost of the network interface will
increase. The network interface can be a passive device used for temporary storing
the received data. In this case, the network interface is under the control of the
processor that performs all the necessary functions to transfer the received message
to the destination remote process. A more sophisticated network interface can
execute most of the communication functions such as assembling complete message
packets, passing these packets to the proper buffer, performing flow control,
managing the transmit and receive of message packets, interrupting the host when
the entire message has been received. In the coming Chapters, we will discuss in
more detail the design issues in host network interfaces.

2.3 Distributed System Architectures and Services

The main issues addressed in this layer are related to the system architecture and the
functions to be offered by the distributed system. The architecture of a distributed
system identifies the main hardware and software components of the system and
how they interact with each other to deliver the services provided by the system. In
addition to defining the system architecture and how its components interact, this
layer defines also the system services and functions that are required to run
distributed applications.

The architecture of a distributed system can be described in terms of several
architectural models that define the system structure and how the components
collaborate and interact with each other. The components of a distributed system
must be independent and be able to provide a significant service or function to the
system users and applications. In what follows, we describe the architectural models
and the system services and functions that should be supported by distributed
systems.

2.3.1 Architectural Models

 High Performance Distributed Systems

 11

The distributed system architectural models can be broadly grouped into four
models: Server Model, Pool Model, Integrated Model, and Hybrid Model [colorois,
ohio-os].

Server Model
The majority of distributed systems that have been built so far are based on the
server model (which is also referred to as the workstation or the client/server
model). In this model each user is provided with a workstation to run the
application tasks. The need for workstations is primarily driven by the user
requirements of a high-quality graphical interface and guaranteed application
response time. Furthermore, the server model supports sharing the data between
users and applications (e.g., shared file servers and directory servers). The server
model consists of workstations distributed across a building or a campus and
connected by a local area network (see Figure 2.4). Some of the workstations could
be located in offices, and thus be tied to a single user, whereas others may be in
public areas where are used by different users. In both cases, at any instant of time,
a workstation is either setting idle or has a user logged into it.

file se rver
p rin ting serve r com p u ting server

. . .
w ork sta tions

N etw ork

 Figure 2.4 Server Model

In this architecture, we do need communication software to enable the applications
running on the workstations to access the system servers. The term server refers to
application software that is typically running on a fast computer that offers a set of
services. Examples of such servers include compute engines, database servers,
authentication/authorization servers, gateway servers, or printers. For example, the
service offered by an authentication/authorization server is to validate user
identities and authorize access to system resources.

In this model, a client sends one or more requests to the server and then waits for a
response. Consequently, distributed applications are written as a combination of
clients and servers. The programming in this model is called synchronous
programming. The server can be implemented in two ways: single or concurrent

 High Performance Distributed Systems

 12

server. If the server is implemented as a single thread of control, it can support only
one request at a time; that is a client request that finds its server busy must wait for
all the earlier requests to complete before its request can be processed. To avoid this
problem, important servers are typically implemented as concurrent servers; the
services are developed using multiple lightweight processes (that we refer to
interchangeably as threads) in order to process several requests concurrently. In
concurrent server, after the request is received a new thread (child thread) is created
to perform the requested service whereas the parent thread keeps listening at the
same port for the next service requests. It is important to note that the client
machine participates significantly in the computations performed in this model; that
is not all the computations are done at the server and the workstations are acting as
input/output devices.

Pool Model
An alternative approach to organize distributed system resources is to construct a
processor pool. The processor pool can be a rack full of CPUs or a set of computers
that are located in a centralized location. The pool resources are dynamically
allocated to user processes on demand. In the server model, the processing powers
of idle workstations cannot be exploited or used in a straightforward manner.
However, in the processor pool model, a user process is allocated CPUs or
computing resources as much as needed and when that process is finished, all its
computing resources are returned to the pool so other processes can use them. There
is no concept of ownership here; all the processors belong equally to every process
in the system. Consequently, the processor pool model does not need any additional
software to achieve load balancing as it is required in the server model to improve
the system utilization and performance, especially when the number of computing
resources is large; when the number is large, the probability of finding computers
idle or lightly loaded is typically high.

In the pool model, programs are executed on a set of computers managed as a
processor service. Users are provided with terminals or low-end workstations that
are connected to the processor pool via a computer network as shown in Figure 2.5.

 High Performance Distributed Systems

 13

supercomputer

multicomputer

.

.

.

processor array

processor pool

 servers

. . .

workstations

Network

terminals

:

. . .

. . .

Figure 2.5 Processor Pool Model

The processor pool model provides a better utilization of resources and increased
flexibility, when compared to the server model. In addition, programs developed
for centralized systems are compatible with this model and can be easily adapted.
Finally, processor heterogeneity can be easily incorporated into the processor pool.
The main disadvantages of this model are the increased communication between the
application program and the terminal, and the limited capabilities provided by the
terminals. However, the wide deployment of high speed networks (e.g., Gigabit
Ethernet) will make the remote access to the processor pool resources (e.g.,
supercomputers, high speed specialized servers) is attractive and cost-effective.
Furthermore, the introduction of hand-held computers (palm, cellular, etc.) will
make this model even more important; we can view the hand-held computers as
terminals and most of the computations and the services (e.g., Application Service
Provides) are provided by the pool resources.

Integrated Model

The integrated model brings many of the advantages of using networked resources
and centralized computing systems to distributed systems by allowing users to
access different system resources in a manner similar to that used in a centralized,
single-image, multi-user computing system. In this model each computer is
provided with appropriate software so it can perform both the server and the client
roles. The system software located in each computer is similar to the operating
system of a centralized multi-user computing system, with the addition of
networking software.

In the integrated model, the set of computing resources forming the distributed
system are managed by a single distributed operating system that makes them
appear to the user as a single computer system, as shown in Figure 2.6. The
individual computers in this model have a high degree of autonomy and run a

 High Performance Distributed Systems

 14

complete set of standard software. A global naming scheme that is supported
across the distributed system allows individual computers to share data and files
without regard to their location. The computing and storage resources required to
run user applications or processes are determined at runtime by the distributed
operating system such that the system load is balanced and certain system
performance requirement is achieved. However, the main limitation of this
approach is the requirement that the user processes across the whole system must
interact using only one uniform software system (that is the distributed operating
system). As a result, this approach requires that the distributed operating system be
ported to every type of computer available in this system. Further, existing
applications must be modified to support and interoperate with the services offered
by the distributed operating system. This requirement limits the scalability of this
approach to develop distributed systems with large number of heterogeneous logical
and physical resources.

N e t w o r k

s u p e r c o m p u t e r
t e r m i n a l s

c o n c e n t r a t o r

s e r v e r s

.
.

.

w o r k s t a t i o n s
.

.
.

 Figure2.6 Integrated Model
Hybrid Model
This model can be viewed as a collection of two or more of the architectural models
discussed above. For example, the server and pool models can be used to organize
the access and the use of the distributed system resources. The Amoeba system is an
example of such a system. In this model, users run interactive applications on their
workstations to improve user response time while other applications run on several
processors taken from the processor pool. By combining these two models, the
hybrid model has several advantages: providing the computing resources needed for
a given application, parallel processing of user tasks on pool’s processors and the
ability to access the system resources from either a terminal or a workstation.

2.3.2 System Level Services
The design of a distributed computing environment can follow two approaches: top-
down or bottom up. The first approach is desirable when the functions and the
services of a distributed system are well defined. It is typically used when
designing special-purposed distributed applications. The second approach is
desirable when the system is built using existing computing resources running
traditional operating systems. The structure of the existing operating systems (e.g.,
Unix) is usually designed to support a centralized time-sharing environment and
does not support the distributed computing environment. An operating system is the
software that provides the functions that allow resources to be shared between tasks,
and provides a level of abstraction above the computer hardware that facilitates the

 High Performance Distributed Systems

 15

use of the system by user and applications programs. However, the required
system-level services are greater in functionality than might normally exist in an
operating system. Therefore, a new set of system-wide services must be added on
top of the individual operating systems in order to run efficiently distributed
applications. Examples of such services include distributed file system, load
balancing and scheduling, concurrency control, redundancy management, security
service, just to name a few. The distributed file system allows the distributed system
users to transparently access and manipulate files regardless of their locations. The
load scheduling and balancing involves distributing the loads across the overall
system resources such that the overall load of the system is well balanced. The
concurrency control allows concurrent access to the distributed system resources as
if they were accessed sequentially (serializable access). Redundancy management
addresses the consistency and integrity issues of the system resources when some
system files or resources are redundantly distributed across the system to improve
performance and system availability. The security service involves securing and
protecting the distributed system services and operations by providing the proper
authentication, authorization, and integrity schemes.
In Part II chapters, we will discuss in detail the design and implementation issues of
these services.

2.4 Distributed Computing Paradigms

In the first layer of the distributed system design model, we address the issues
related to designing the communication system, while in the second layer, we
address the system architecture and the system services to be supported by a
distributed system. In the third layer, we address the programming paradigms and
communication models needed to develop parallel and distributed applications. The
distributed computing paradigms can be classified according to two models:
Computation and Communication models. The computation model defines the
programming model to develop parallel and distributed applications while the
communication model defines the techniques used by processes or applications to
exchange control and data information. The computation model describes the
techniques available to the users to decompose and run concurrently the tasks of a
given distributed application. In broad terms, there are two computing models: Data
Parallel, and Functional Parallel. The communication model can be broadly
grouped into two types: Message Passing, and Shared Memory. The underlying
communication system can support either one or both of these paradigms. However,
supporting one communication paradigm is sufficient to support the other type; a
message passing can be implemented using shared memory and vice versa. The
type of computing and communication paradigms used determine the type of
distributed algorithms that can be used to run efficiently a given distributed
application; what is good for a message passing model might not be necessarily
good when it is implemented using shared memory model.

2.4.1 Computation Models

 High Performance Distributed Systems

 16

Functional Parallel Model
In this model, the computers involved in a distributed application execute different
threads of control or tasks, and interact with each other to exchange information and
synchronize the concurrent execution of their tasks. Different terms have been used
in the literature to describe this type of parallelism such as control parallelism, and
asynchronous parallelism. Figure 2.7(a) shows the task graph of a distributed
application with five different functions (F1-F5). If this application is programmed
based on the functional parallel model and run on two computers, one can allocate
functions F1 and F3 to computer 1 and functions F2, F4 and F5 to computer 2 (see
Figure 2.7(b)). In this example, the two computers must synchronize their
executions such that computer 2 can execute function F5 only after functions F2
and F4 have been completed and computer 2 has received the partial results from
computer 1. In other words, the parallel execution of these functions must be
serializable; that is the parallel execution of the distributed application produces
identical results to the sequential execution of this application [Casavant, et al,
1996; Quinn, 1994].

F4F3

F2F1

 START

 END

F5

F4F3

F2F1

 START

 END

F5

 Shared Data

Computer 1

Computer 2

(a) (b)

 (a) (b)

 High Performance Distributed Systems

 17

F4F3

F2F1

 START

 END

F5

F4F3

F2F1

 START

 END

F5

Partitioned Shared Data

Computer 1 Computer 2

 (c)
 Figure2.7 (a) A block of a Task with five functions, (b) Functional
 Parallel Model, and (c) SPMD Data Parallel Model.

Another variation to the functional parallel model is the host-node programming
model. In this model, the user writes two programs: the host and node programs.
The host program controls and manages the concurrent execution of the application
tasks by downloading the node program to each computer as well as the required
data. In addition, the host program receives the results from the node program. The
node program contains most of the compute-intensive tasks of the application. The
number of computers that will run the node program is typically determined at
runtime.

In general, parallel and distributed applications developed based on the functional
parallel model might lead to race conditions and produce imbalance conditions; this
occurs because the task completion depends on many variables such as the task
size, type of computer used, memory size available, current load on the
communication system, etc. Furthermore, the amount of parallelism that can be
supported by this paradigm is limited by the number of functions associated with
the application. The performance of a distributed application can be improved by
decomposing the application functions into smaller functions; that depends on the
type of application and the available computing and communication resources.

Data Parallel Model

In the data parallel model, which is also referred to as synchronous model, the
entire data set is partitioned among the computers involved in the execution of a
distributed application such that each computer is assigned a subset of the whole
data sets [Hillis and Steele, 1986]. In this model, each computer runs the same
program but each operates on a different data set, referred to as Single Program
Multiple Data (SPMD). Figure 2.7(c) shows how the distributed application shown

 High Performance Distributed Systems

 18

in Figure 2.7 (a) can be implemented using data parallel model. In this case, every
computer executes the five functions associated with this application, but each
computer operates on different data sets.

Data parallel model has been argued favorably by some researchers because it can
be used to solve large number of important problems. It has been shown that the
majority of real applications can be solved using data parallel model [Fox, Williams
and Messina, 1994]. Furthermore, it is easier to develop applications based on data
parallel paradigm than those written based on the functional parallel paradigm. In
addition, the amount of parallelism that can be exploited in functional parallel
model is fixed and is independent of the size of the data sets, whereas in the data
parallel model, the data parallelism increases with the size of the data [Hatcher and
Quinn, 1991]. Other researchers favored the functional parallel model since all large
scale applications can be mapped naturally into functional paradigm.
In summary, we do need to efficiently exploit both the functional and data
parallelism in a given large distributed application in order to achieve a high
performance distributed computing environment.

2.4.2 Distributed Communications Models

Message Passing Model
The Message Passing model uses a micro-kernel (or a communication library) to
pass messages between local and remote processes as well as between processes
and the operating system. In this model, messages become the main technique for
all interactions between a process and its environment, including other processes. In
this model, application developers need to be explicitly involved in writing the
communication and synchronization routines required for two remote processes or
tasks to interact and collaborate on solving one application. Depending on the
relationship between the communicating processes, one can identify two types of
message passing paradigms: peer-to-peer message passing, and master-slave
message passing. In the peer-to-peer Message Passing, any process can
communicate with any process in the system. This type is usually referred to by
message passing. In the master-slave type, the communications are only between
the master and the slave processes as in the remote procedure call paradigm. In
what follows, we briefly describe these two types of message passing.

 In the peer-to-peer message passing model, there are two basic communications
primitives: SEND and RECEIVE that are available to the users. However, there are
many different forms to implement the SEND and RECEIVE primitives. This
depends on the required type of communication between the source and destination
processes: blocking or non-blocking, synchronous or asynchronous. The main
limitations of this model is that the programmers must consider many issues while
writing a distributed program such as synchronizing request and response messages,
handling data representations especially when heterogeneous computers are
involved in the transfer, managing machine addresses, and handling system failures
that could be related to communications network or computer failures [Singhal and

 High Performance Distributed Systems

 19

Mukesh, 1994]. In addition to all of these, debugging and testing Message Passing
programs are difficult because their executions are time-dependent and the
asynchronous nature of the system.

The remote procedure calls mechanism has been used to alleviate some of the
difficulties encountered in programming parallel and distributed applications. The
procedure call mechanism within a program is a well-understood technique to
transfer control and data between the calling and called programs. The RPC is an
extension of this concept to allow a calling program on one computer to transfer
control and data to the called program on another computer. The RPC system hides
all the details related to transferring control and data between processes and give
them the illusion of calling a local procedure within a program. The remote
procedure call model provides a methodology for communication between the
client and server parts of a distributed application. In this model, the client requests
a service by making what appears to be a procedure call. If the relevant server is
remote, the call is translated into a message using the underlying RPC mechanism
and then sent over the communication network. The appropriate server receives the
request, executes the procedure and returns the result to the client.

Shared Memory Model

In message passing model, the communication between processes is controlled by a
protocol and involves explicit cooperation between processes. In Shared memory
model, communication is not explicitly controlled and it requires the use of a global
shared memory. The two forms of communication models can be compared using
the following analogies: message communication resembles the operation of a
postal service in sending and receiving mail. A simpler form of message
communication can be achieved using a shared mailbox scheme. On the other hand,
the shared memory scheme can be compared to a bulletin board, sometimes found
in a grocery store or in a supermarket where users post information such as ads for
merchandise or help wanted notices. The shared memory acts as a central repository
for existing information that can be read or updated by anyone involved.

 High Performance Distributed Systems

 20

Shared Memory

Memory

CPU

Memory

CPU

Memory

CPU

Network

. . .

 Figure2.8 Distributed Shared Memory Model

Most of distributed applications have been developed based on the message passing
model. However, the current advances in networking and software tools have made
it possible to implement distributed applications based on shared memory model. In
this approach, a global virtual address space is provided such that processes or tasks
can use this address space to point to the location where shared data can be stored
or retrieved. In this model, application tasks or processes can access shared data by
just providing a pointer or an address regardless of the location of where the data is
stored. Figure 2.8 shows how a Distributed Shared Memory (DSM) system can be
built using the physical memory systems available in each computer.

The advantages of the DSM model include easy to program, easy to transfer
complex data structures, no data encapsulation is required as is the case in message
passing model, and portability (program written for multiprocessor systems can be
ported easily to this environment) [Stumm and Zhou, 1990]. The main differences
between message passing and shared memory models can be highlighted as follows:
1) The communication between processes using shared memory model is simpler
because the communicated data can be accessed by performing reading operations
as if they were local. In the message passing system, a message must be passed
from one process to another. Many other issues must be considered in order to
transfer efficiently the inter-process messages such as buffer management and
allocation, routing scheme, flow control, and error control; and 2) Message passing
system is scalable and can support a large number of heterogeneous computers
interconnected by a variety of processor interconnect schemes. However, in shared
memory model, this approach is not as scalable as the Message Passing model
because the complexity of the system increases significantly when the number of
computers involved in the distributed shared memory becomes large.

 High Performance Distributed Systems

 21

2.5 Summary

Distributed computing systems field is relatively new and as a result there is no
general consensus on what constitute a distributed system and how to characterize
and design such type of computing systems. In this chapter, we have presented the
design issues of distributed systems in a three layer design model: 1) Network,
Protocol, and Interface (NPI) layer, 2) System Architecture and Services (SAS)
layer, and 3) Distributed Computing Paradigms (DCP) layer. Each layer defines the
design issues and technologies that can be used to implement the distributed system
components of that layer.

The NPI layer addresses the main issues encountered during the design of the
communication system. This layer is decomposed into three sub-layers: Networks,
Communication Protocols and Network Interfaces. Each sub-layer denotes one
important communication component (subsystem) required to implement the
distributed system communication system. The SAS layer represents the designers,
developers, and system managers’ view of the system. It defines the main
components of the system, system structure or architecture, and the system level
services required to develop distributed computing applications. Consequently, this
layer is decomposed into two sub-layers: architectural models and system level
services. The architectural models describe the structure that interconnects the main
components of the system and how they perform their functions. These models can
be broadly classified into four categories: server model, pool model, integrated
model, and hybrid model. The majority of distributed systems that are currently in
use or under development are based on the server model (which is also referred to
as workstation or client/server model). The distributed system level services could
be provided by augmenting the basic functions of an existing operating system.
These services should support global system state or knowledge, inter-process
communication, distributed file service, concurrency control, redundancy
management, load balancing and scheduling, fault tolerance and security.

The Distributed Computing Paradigm (DCP) layer represents the programmer
(user) perception of the distributed system. It focuses on the programming models
that can be used to develop distributed applications. The design issues of this can be
classified into two models: Computation and Communication Models. The
computation model describes the mechanisms used to implement the computational
tasks associated with a given application. These mechanisms can broadly be
described by two models: Functional Parallel, and Data Parallel. The
communication models describe how the computational tasks exchange information
during the application execution. The communication models can be grouped into
two types: Message Passing (MP) and Shared Memory (SM).

2.6 Problems

1. Explain about Distributed System Reference Model.

 High Performance Distributed Systems

 22

2. What are the main issues involved in designing a high performance distributed
computing system?

3. With the rapid deployment of ATM-based networks, hub-based networks are

expected to be widely used. Explain why these networks are attractive.

4. Compare the functions of data link layer with those offered by the transport

layers in the ISO OSI reference model.

5. Suppose you wanted to perform the task of finding all the primes in a list of

numbers, using a distributed system,
• Develop three distributed algorithms, based on each of the following

programming models to sort the prime numbers in the list: (i) funcational, (ii)
data, and (iii) remote procedure call.

• Choose one of the algorithms you described in part-1 and show how this
algorithm can be implemented using each of the following two communication
models: (i) message passing and (ii) shared memory.

6. Compare the distributed system architectural models by showing their
advantages and disadvantages. For each architectural model, define the set of
applications that are most suitable for that model.

7. You are asked to design a distributed system lab that supports the computing

projects and assignments of computer engineering students. Show how the
Distributed System Reference Model can be used to design such a system.

References

1. Liebowitz B.H., and Carson, J.H., ``Multiple Processor Systems for Real-Time

Applications'', Prentice-Hall, 1985.

2. Weitzman, Cay. ``Distributed micro/minicomputer systems: structure,

implementation, and application''. Englewood Cliffs, N.J.: Prentice-Hall, c1980.

3. Halsall, Fred. ``Data communications, computer networks and open systems''.

3rd ed. Addison-wesley 1992.

4. LaPorta, T.F., and Schwartz, M., ``Architectures, Features, and Implementations

of High-Speed Transport Protocols'', IEEE Network Magazine'', May 1991.

5. Mullender, S., Distributed Systems, Second Edition, Addison-Wesley, 1993.

6. Coulouris, G.F., Dollimore, J., Distributed Systems: Concepts and Design,

Addison-Wesley, 1988.

 High Performance Distributed Systems

 23

7. Hillis, W. D. and Steele, G. Data parallel algorithms, Comm. ACM, 29:1170,
1986.

8. Hatcher, P. J., and Quinn, M. J., Data-Parallel Programming on MIMD

Computers. MIT Press, Cambridge, Massachusetts, 1991.

9. Singhal, Mukesh. ``Advanced concepts in operating systems : distributed,

database, and multiprocessor operating systems''. McGraw-Hill, c1994.

10. IBM, ``Distributed Computing Environment Understanding the Concepts''. IBM

Corp. 1993.

11. M. Stumm and S. Zhou, "Algorithms Implememting Distributed Shared

Memory", Computer; Vol.23, No. 5, May 1990, pp. 54-64.

12. B. Nitzberg and V. Lo, "Distributed Shared Memory: A Survey of Issues and

Algorithms", Computer, Aug. 1991, pp. 52-60.

13. K. Li and P. Hudak, "Memory Coherence in Shared Virtual Memory Systems",

ACM Trans. Computer Systems, Vol.7, No. 4, Nov. 1989, pp. 321-359.

14. K. Li and R. Schaefer, "A Hypercube Shared Virtual Memory System", 1989

Inter. Conf. on Parallel Processing, pp. 125-132.

15. B. Fleisch and G. Popek, "Mirage : A Coherent Distributed Shared Memory

Design", Proc. 14th ACM Symp. Operating System Principles, ACM ,NY 1989,
pp. 211-223.

16. J. Bennet, J. Carter, and W. Zwaenepoel, "Munin: Distributed Shared Memory

Based on Type-Specific Memory Coherence", Porc. 1990 Conf. Principles and
Practice of Parallel Programming, ACM Press, New York, NY 1990, pp. 168-
176.

17. U. Ramachandran and M. Y. A. Khalidi, "An Implementation of Distributed

Shared Memory", First Workshop Experiences with building Distributed and
Multiprocessor Systems, Usenix Assoc., Berkeley, Calif., 1989, pp. 21-38.

18. M. Dubois, C. Scheurich, and F. A. Briggs, "Synchronization, Coherence, and

Event Ordering in Multiprocessors", Computer, Vol. 21, No. 2, Feb. 1998, pp.
9-21.

19. J. K. Bennet, "The Design and Implementation of Distributed Smalltalk", Proc.

of the Second ACM conf. on Object-Oriented Programming Systems,
Languages and Applications, Oct. 1987, pp. 318-330.

 High Performance Distributed Systems

 24

20. R. Katz, 5. Eggers, D. Wood, C. L. Perkins, and R. Sheldon, "Implementing a
Cache Consistency Protocol", Proc. of the 12th Annu. Inter. Symp. on
Computer Architecture, June 1985, pp. 276-283.

21. P. Dasgupta, R. J. LeBlane, M. Ahamad, and U Ramachandran, "The Clouds

Distributed Operating System," IEEE Computer, 1991, pp.34-44

22. B. Fleich and G. Popek, "Mirage: A Coherence Distributed Shared Memory

Design," Proc. 14th ACM Symp. Operating System Principles, ACM, New
York, 1989,pp.21 1-223.

23. D. Lenoskietal, "The Directoiy-Based Cache Coherence Pro to col for the Dash

Multiprocessor, "Proc. 17th Int'l Symp. Computer Architecture, IEEE CS Press,
Los Alamitos, Calif., Order No. 2047, 1990, pp. 148-159.

24. R. Bisiani and M. Ravishankar, "Plus: A Distributed Shared-Memoiy System,"

Proc. 17th Int'l Symp. Computer Architecture, WEE CS Press, Los
Alamitos,Calif., Order No. 2047,1990, pp.115-124.

25. J. Bennett, J. Carter, And W. Zwaenepoel. "Munin: Distributed Shared Memory

based on Type-Specific Memoiy Coherence, "Proc. 1990 Conf Principles and
Practice of Parallel Programming, ACM Press, New York, N.Y., 1990, pp.168-
176.

26. D. R. Cheriton, "Problem-oriented shared memoiy : a decentralized aproach to

distributed systems design ",Proceedings of the 6th Internation Conference on
Distributed Computing Systems. May 1986, pp. 190-197.

27. Jose M. Bernabeu Auban , Phillip W. Hutto, M. Yousef A. Khalidi, Mustaque

Ahamad, Willian F. Appelbe, Partha Dasgupta, Richard J. Leblanc and
Umarkishore Ramachandran, "Clouds--a distributed, object-based operating
system: architecture and kernel implication ", European UNIX Systems User
Group Autumn Conference, EUUG, October 1988, pp.25-38.

28. Francois Armand, Frederic Herrmann, Michel Gien and Marc Rozier, "Chorus,

a new technology for building unix systems", European UNIX systems User
Group Autumn Conference, EUUG, October 1988, ppi-18.

29. G. Delp. ``The Architecture and Implementation ofMemnet: A High-speed

Shared Memoy Computer Communication Network, doctoral disseration'',
University of Delaware, Nework, Del., 1988.

30. Zhou et al., "A Heterogeneous Distributed Shared Memory," to be published in

IEEE Trans. Parallel and Distributed Systems.

 High Performance Distributed Systems

 25

31. Geoffrey C. Fox, Roy D. Williams, and Paul C. Messina. ``Parallel Computing
Works!''. Morgan Kaufmann, 1994.

32. D.E.Tolmie, A.Tanlawy(ed), “High Performance Networks – Technology and

Protocols”, Norwell, Massachusetts, Kluwer Academic Publishers, 1994.

33. W. Stallings, “Advances in Local and Metropolitan Area Networks”, Los

Alamitos, California, IEEE Computer Society Press, 1994.

34. B.N.Jain, “Open Systems Interconnection: Its Architecture and Protocols”, New

York, McGraw-Hill, 1993.

35. T.L.Casavant, et al (ed), “Parallel Computers: Theory and Practice”, IEEE

Computer Society Press, 1996

36. M.J.Quinn, “Parallel Computing: Theory and Practice”, New York, McGraw-

Hill, 1994

37. A. S. Tanenbaum, Computer Networks, 2nd Edition, Prentice-Hall, 1988.

