
Concurrency Control in Distributed
Systems

ECE 677
University of Arizona

2 ECE 677, Concurrency Control S. Hariri

Agenda

What?
Why?
Main problems
Techniques
Two-phase locking
Time stamping method
Optimistic Concurrency Control

3 ECE 677, Concurrency Control S. Hariri

Why concurrency control?

Distributed systems combine both distribution
and integration
CC problems arise when a computer program’s
software, data and interface are distributed
over several computers.
Probability of conflict increases
Conflict causes damage to the system
consistency and integrity

4 ECE 677, Concurrency Control S. Hariri

Why is concurrency control needed?

Temporary update problem : When a
transaction fails after updating some data itmes and
another transaction accesses them before it can be
changed to its original value.

Lost update problem : Two transactions operate
on a data item at the same time. Suppose one is reading
data before the other transaction updates the value.

5 ECE 677, Concurrency Control S. Hariri

Lost Update Problem => needs transactions to be
serializable
When transactions execute concurrently without
synchronization the exact sequence of reads and writes
is not predictable
 Transaction T Transaction U

Read (a)
 Read (c)
 Write (c+ $3)
Read (b)
Write (a - $2)
 Read (b)
Write (b + $2)
 Write (b - $3)

 Transaction T Transaction U

Read (a)
 Read (c)
 Write (c+ $3)
Read (b)
Write (a - $2)

 Read (b)
 Write (b - $3)
Write (b + $2)

Possible interleaving of T and U

The Need for Transactions

6 ECE 677, Concurrency Control S. Hariri

Serial Equivalence (Serializability)

The following interleaving of transactions has
the same effect as serial execution

How Do We Achieve Concurrency Control?

 Transaction T Transaction U

Read (a)
 Read (c)
Read (b)
Write (a - $2)

 Write (c+ $3)
Write (b + $2)

 Read (b)
 Write (b - $3)

7 ECE 677, Concurrency Control S. Hariri

Serial Equivalence (Serializability) (cont)

How Do We Achieve Concurrency Control?
  locking: each data item has a lock which is used to
provide mutual exclusive access to that data item
  optimistic control: perform call operations until the
end, commit transaction if no conflict, otherwise abort
it
  timestamps: each transaction and data item are
timestamped every time they are accessed timestamps
enforce serializable execution

8 ECE 677, Concurrency Control S. Hariri

Transactions

Database term.
Execution of program that accesses a database.

In distributed systems,
Concurrency control in the client/server model.
From client’s point of view, sequence of operations

executed by server in servicing client’s request in
a single step.

9 ECE 677, Concurrency Control S. Hariri

Transaction Properties

ACID:
Atomicity.
Consistency.
Isolation.
Durability.

10 ECE 677, Concurrency Control S. Hariri

Transaction Atomicity

“All or nothing”.
Sequence of operations to service client’s

request are performed in one step, i.e.,
either all of them are executed or none
are.

Issues:
Multiple concurrent clients: “isolation”.
Server failures: “failure atomicity”.

11 ECE 677, Concurrency Control S. Hariri

Transaction Features

Recoverability: server should be able to
“roll back” to state before transaction
execution.

Serializability: transactions have same
effect whether executed concurrently
or sequentially.

Durability: effects of transactions are
permanent.

12 ECE 677, Concurrency Control S. Hariri

The Transaction Service

File service that supports atomic transactions on its
files

OpenTransaction -> Trans
 start a new transaction and delivers a unique TID Trans. This identifier
 will be used in the other operations in the transaction.

CloseTransaction(Trans) -> (Commit, Abort)
 ends a transaction: a Commit returned value indicates that the transaction
 has committed: an Abort returned value indicates that it has aborted.

AbortTransaction (Trans)
 aborts the transaction.

TWrite(Trans, File, i, Data) - REPORTS(BadPosition)
 has the same effect as Write(File, i, data) but records the new data in
 a tentative form pending the completion of the transaction Trans.

Transaction service operation

13 ECE 677, Concurrency Control S. Hariri

The Transaction Service (cont)

TRead(Trans, File, i, n) -> Data - REPORTS(BadPosition)
 delivers the tentative data resulting from the transaction Trans if any has
 been recorded, otherwise has the same effect as Read(File, i, n).

TCreate(Trans, filetype) -> File
 records a tentative Create pending the completion of the transaction Trans.

TDelete(Trans, File)
 records a tentative Delete pending the completion of the transaction Trans.

TTruncate(Trans, File)
 records a tentative Truncate pending the completion of the transaction

Trans.
TLength(Trans, File) -> Length

 delivers the tentative new length resulting from the transaction Trans if any
 has been recorded. otherwise has the same effect as Length.

Transaction service operation (cont)

14 ECE 677, Concurrency Control S. Hariri

Transaction File Service

Transaction module : keeps transaction record including phase
File module : relate file IDs to particular files
File access module : reads or writes the file data or attributes (uses file index)

 Recovery module : makes
Concurrency control module private tentative data items

Block service Stable storage

Block module : access and Stable storage module : access
allocation of disk blocks and allocation of stable blocks

 Device module : disk I/O and buffering

15 ECE 677, Concurrency Control S. Hariri

Concurrency Control Techniques

Run transactions one at a time
total elimination of concurrency is neither acceptable nor necessary

Run transactions concurrently if they use
different file items and sequentially when
they use the same file items
difficult to predict which items to be used by a transaction
two transactions may use the same item for a short period

Alternative methods:
locking
optimistic concurrency control
timestamps

16 ECE 677, Concurrency Control S. Hariri

Concurrency Control Techniques

Locking
A lock guarantees exclusive use of a data item to a current
transaction. A transaction must claim a read (shared) lock or write
(exclusive) lock on a data item prior to data access.

Time stamping
Use time to order concurrent access to shared
data items

Optimistic methods
Assumption: the majority of the system operations do not conflict
All processes can concurrently access data, but before any update is
saved , a check is made to see if any concurrent access has taken place.

17 ECE 677, Concurrency Control S. Hariri

Locks

Order transactions accessing shared data
based on order of access to data.
Lock granularity: affects level of
concurrency.

1 lock per shared data item.
Read (shared) locks and write locks.

18 ECE 677, Concurrency Control S. Hariri

Lock Implementation

Server lock manager
Maintains table of locks for server data items.
Lock and unlock operations.
Clients wait on a lock for given data until data
is released; then client is signaled.
Each client’s request runs as separate server
thread.

19 ECE 677, Concurrency Control S. Hariri

Deadlock

Use of locks can lead to deadlock.
Deadlock: each transaction waits for another

transaction to release a lock forming a wait
cycle.

Deadlock condition: cycle in the wait-for graph.
Deadlock prevention and detection.
Deadlock resolution: lock timeout.

20 ECE 677, Concurrency Control S. Hariri

Basic Synchronization Primitives

Locks: a transaction can lock a data item in
two modes:

Exclusive Mode: no other transaction can concurrently lock the data
item

Shared Mode: other transactions can lock the data item

Timestamps: a unique number assigned to
each transaction that is monotonically
increasing and unique across the system

Lamport proposed a 2-tuple timestamp:
tsi = (Ci, i); Ci is a logical clock and i denotes the site

21 ECE 677, Concurrency Control S. Hariri

Locks

Locks on data items ensure that only one client at
a time may access each data item

Locks and waiting are used to force serial
equivalence on clients
a transaction that needs to access a locked item must wait until its

lock is released
 which signals the condition variable associated with a waiting

transaction

Lock can be defined as a record with
binary variable (locked or not)
condition variable (wait or signal)
TID that has set the lock

22 ECE 677, Concurrency Control S. Hariri

Locking Schemes

Static Locking
a transaction acquires locks on all the
objects it needs before executing any
action on the data objects
 it unlocks all the locked objects
after it has executed all of its
actions

23 ECE 677, Concurrency Control S. Hariri

Drawbacks of Static Locking

This approach is simple
it limits concurrency
 It needs to define a priori all the
objects that need to lock;
This might not be known at the
beginning of the transaction

24 ECE 677, Concurrency Control S. Hariri

Two-Phase Locking Scheme

  It is a dynamic locking scheme in which a transaction
requests a lock on a data object when it needs the data
object.

  This protocol imposes a constraint on lock acquisition
and the lock releases actions to guarantee consistency

  The protocol has two phases: a growing phase and a
shrinking phase.

  Two-phase locking increases concurrency over static
locking

25 ECE 677, Concurrency Control S. Hariri

Two-Phase Locking Scheme- Cont.

During the first phase (growing phase)
new locks are acquired
During the second phase (shrinking phase)
locks are released
Locks must not be released until the
transaction is either committed or
aborted

26 ECE 677, Concurrency Control S. Hariri

Two-phase Locking

q  When a client operation accesses an item within a transaction :
(a) If the item is not already locked, the server locks it and
proceeds to access the data for the client
(b) If the item is already locked for another transaction, the client
must wait until it is unlocked.
(c) If the server has already locked the item in the same
transaction, it can proceed to access the item.

q  When a transaction is committed or aborted, the server
unlockes all items, it locked for the transaction.

To ensure adherence to these rules, users have no access to locking
 operations; they are performed by the transaction service

Use of locks

27 ECE 677, Concurrency Control S. Hariri

Locks (cont)

 Transaction T Transaction U
Operations Locks Operations Locks
OpenTransaction
TRead(a) locks a

 OpenTransaction
 TRead(c) lock c
 TWrite(c+$3)

TRead(b) lock b
TWrite(a-$2) Tread(b) wait

TWrite(b+$2)
CloseTransaction unlock a and b lock b

 TWrite(b-$3)
 CloseTransaction unlock b and c

28 ECE 677, Concurrency Control S. Hariri

Read and Write Locks:

Simple lock for both Tread and Twrite operations reduces
concurrency more than necessary
It is Okay to have several concurrent transactions reading an item,
or a single T writing an item, but not both (many reader/single
writer scheme)

If the transaction is writing to an item on which it has previously
placed a read lock, the read lock is converted to a write lock

Lock already set Lock to set
 Read Write

None ok ok
read ok wait
write wait wait

29 ECE 677, Concurrency Control S. Hariri

Read and Write Locks: (cont)

 Transaction T Transaction U
Operations Locks Operations Locks
TRead(a) read locks a

 TRead(c) read lock c
 TWrite(c+$3) write lock c

TRead(b) read lock b
TWrite(a-$2) write lock a Tread(b)

 shares read
 lock on b

TWrite(b+$2) wait on U’s
 read lock on b
 TWrite(b-$3) waits on T’s
 read lock on b

30 ECE 677, Concurrency Control S. Hariri

Intention-to-write locks

the existence of a read lock prevents any other
transaction from writing the locked data item
we could allow a transaction to proceed with its
tentative writes until it commits, it might be aborted so
no change has occurred to the locked data item

T’s operation U’s operation
 read I-write Commit

none ok ok ok
read ok ok wait
I-write ok wait wait
commit wait wait wait

31 ECE 677, Concurrency Control S. Hariri

Intention-to-Write Lock

 Transaction T Transaction U
Operations Locks Operations Locks
TRead(a) read locks a

 TRead(c) read lock c
 TWrite(c+$3) I-write lock c

TRead(b) read lock b
TWrite(a-$2) I-write lock a

 TRead(b) shares read
 lock on b

TWrite(b+$2) I-write lock b
 . . . TWrite(b-$3) waits on T’s
 I-write lock b
CloseTransaction wait on U’s

 read lock on b

32 ECE 677, Concurrency Control S. Hariri

Drawbacks of 2P-Lock Scheme

1. Deadlocks
 it is prone to deadlocks because a transaction can
request a lock while holding locks on other object; a
deadlock occurs when a set of transactions are
involved in a circular wait

2. Cascaded roll-backs
when a transaction is rolled back, all the data objects
modified by by it are restored to their original
states.
This property might lead to roll back another set of
transactions and so on.

33 ECE 677, Concurrency Control S. Hariri

Deadlock Resolution

Deadlock occurs when each one in a group is waiting for some
other member to release a lock
Deadlock detection is based on a wait-for graph containing
transactions and locks in the nodes

a b

T U

The wait-for graph

lock lock
wait

34 ECE 677, Concurrency Control S. Hariri

Deadlock Resolution (cont)

Timeouts: each lock is given a period in
which it is invulnerable,
after that period, it becomes vulnerable
and its locks can be released
in overloaded system

timeout increases
long time T can be penalized
it is hard to decide on timeout interval

35 ECE 677, Concurrency Control S. Hariri

Deadlock Resolution (cont)

If there are timeouts on locks, the rules
for converting an I-write lock to a
commit lock are :
1. If another process has a vulnerable read lock, the server

breaks the vulnerable read lock and converts the I-write
lock to a commit lock

2. If the I-write lock is vulnerable and another process has
read lock that is not vulnerable, the server aborts the
transaction owning the I-write lock

3. If neither the I-write lock nor the read lock of another
process is vulnerable, the server waits until one of the two
previous cases occurs

36 ECE 677, Concurrency Control S. Hariri

Deadlock Resolution (cont)

 Transaction T Transaction U
Operations Locks Operations Locks
TRead(a) read locks a

 TRead(c) read lock c
 TWrite(c+$3) I-write lock c

TRead(b) read lock b
TWrite(a-$2) I-write lock a

 TRead(b) shares read
 lock on b

TWrite(b+$2) I-write lock b
 . . . TWrite(b-$3) waits on T’s
 I-write lock b
CloseTransaction wait on U’s

 read lock on b
 read lock on b
 now vulnerable
 commit lock b abort U

Read, T-write and commit locks in T and U

Lock timeout

37 ECE 677, Concurrency Control S. Hariri

Timestamp-based Locking

when a transaction is submitted, it is assigned a
unique timestamp that defines a total order of
transactions and can be used to resolve conflicts
among transactions
 The use of time stamps prevents deadlocks.
 A conflict occurs when

a transaction makes a read request for a data object, for which
another transaction currently has a write access
 or a transaction makes a write request for a data object for
which another transaction has a write or read access

38 ECE 677, Concurrency Control S. Hariri

Timestamps (Write Rules)

Conflicts occur when

 T’s U’s
 read write
 read ok no
 write no no

Write Operation Rules:

1. The timestamp of the current transaction is more recent than the read and
(committed) write timestamps of the data item. A tentative write operation is
performed

2. The timestamp of the transaction requesting the write is older than the
timestamp of the last read or committed write of the data item. This implies
that the write is arriving too late - another transaction has accessed the item
since the current transaction started - and the current transaction is aborted

W-ts R-ts W-ts

W-ts R-ts W-ts

39 ECE 677, Concurrency Control S. Hariri

Read Operations and Timestamps with
Tentative Written Data

read
proceeds read

waits

transaction
aborts transaction

aborts

r1(a)
r1(b)

r2
r3

time

key : data item produced by a previous committed transaction

tentative data item produced by another transaction

current transaction

40 ECE 677, Concurrency Control S. Hariri

Read/Write Operation
Rules

 Timestamps
T U ta tb tc

 read write read write read write
TRead(a) tT

 TRead(c) tr
 Twrite(c+$3) tw

TRead(b) tT
TWrite(a-$2) tT

 TRead(b) Ur
Twrite(b+$2) Tw
Abort

 TWrite(b-$3) Uw

Timestamps in transactions T and U

W-TS R-ts W-ts

W-ts R-ts W-TS

41 ECE 677, Concurrency Control S. Hariri

Timestamp Locking-Continue

Conflict Resolution

WAIT: wait until the conflicting transaction either
completes or aborts
it is resolved by taking one of the following actions:
Restart: Either the requesting transaction or the
one it conflicts with is aborted and started afresh;
 restart is achieved using either Die or Wound

42 ECE 677, Concurrency Control S. Hariri

Conflict Resolution- Restart Operation

a) Die: the requesting transaction aborts and
starts a fresh
b) Wound: the transaction in conflict with the
requesting T is tagged as Wound transaction.

This message is then broadcasted to all sites visited
by the wonded transaction. If these messages are
received before the wound transaction commits,
then the transaction is aborted; otherwise the
wound messages are ignored
The requesting transaction proceeds after the
wonded transaction completes or aborts

43 ECE 677, Concurrency Control S. Hariri

Wait-Die Algorithm

It is a nonpreemptive algorithm because a requesting
transaction never forces the transaction holding the
requested data object to abort
Conflict: Read while older Ts doing write Or
 Write while older Ts did Read or Write
If Requesting T1 is in conflict with Transaction T2

If T1 is older, then T1 waits

otherwise T1 (newer) dies and restarts afresh

It prefers older transactions

44 ECE 677, Concurrency Control S. Hariri

Wound-Wait Algorithm

it is preemptive algorithm
if T1 is in conflict with T2

If T1 is older, it wounds T2; then
broadcast wound message;

 if received before commit T2 at a
site, T2 aborts

otherwise, T1 is newer, it waits

45 ECE 677, Concurrency Control S. Hariri

Comparison Between the Algorithms

Waiting Time:
The wait-die makes older transactions wait for younger

transactions
The opposite occurs in wound-wait algorithm; older

transactions never waits for younger ones and wound those
in conflict with older ones

The older a transaction becomes, the less it waits

Number of Restarts:
In wait-die algorithm, a younger transaction might die and

restart several times before it completes
 In wound-wait algorithm, if the requester is younger, it waits

rather than continuously dying and restarting

46 ECE 677, Concurrency Control S. Hariri

Timestamp-based Algorithms

Every site maintains a logical clock that is
incremented when a transaction is
submitted and is updated whenever it
receives a message with a higher clock
value.
Timestamps are used in two ways:

1. determine the currency and outdateness of a request with
respect to the data object is operating on
2. order read-write requests with respect to one another

47 ECE 677, Concurrency Control S. Hariri

Basic Timestamp Ordering (BTO)
Algorithm

 keeps track of the largest timestamp of
any read or write processed so far for
each data object
 R-ts(x), W-ts(x)

Read Request read(x,TS):
if TS < W-ts(x), it is rejected and its T is aborted
otherwise, it is executed and R-ts(x) is set to max {R-ts(x), TS)

Write Request write(x, v, TS)
if TS < R-ts(x) or TS < W-ts(x), then it is rejected.
otherwise it is executed, and W-ts(x) is set to TS

48 ECE 677, Concurrency Control S. Hariri

Multiversion Timestamp Ordering
Algorithm

a history of a set of R-ts , and <W-ts, value>
pairs (versions) is kept for each data object

a Read request read (x, TS) is executed by
reading the version of x with the largest
timestamp less than TS and then adding TS to
the x's set of R-ts's
a write(x,v, TS) request is executed as follows:

if there exists a R-ts(x) with stamp larger than TS in the interval
between TS and the previous write timestamp, the write request is
rejected
otherwise, TS > R-ts (x), it is accepted TS W(ts) R

49 ECE 677, Concurrency Control S. Hariri

Conservative Timestamp Ordering
Algorithm

it eliminates aborts and restarts of
transactions by executing the requests in
strict timestamp order.
 A scheduler processes a request when it
is sure that there is no other request
with a smaller (older) timestamp in the
system
The scheduler maintains two queues R and
W-queues

50 ECE 677, Concurrency Control S. Hariri

Conservative Ordering Algorithm-continue

1. A read(x,TS) request is executed if every W-queue
nonempty and the first write on each W-queue has a
timestamp larger than TS, the read is executed;
otherwise the read request is buffered in the R-queue
2. A write(x, v, TS) request is executed if all R-queues
and W-queues are nonempty and the first write on each
W-queue has a timestamp greater than TS, then the
write is executed;
otherwise, the write request is buffered in the W-queue
3. When read or write requests are buffered, buffered
requests are tested to see if any can be executed.

51 ECE 677, Concurrency Control S. Hariri

Drawbacks of CTO Algorithm

termination is not guaranteed;
a scheduler might not receive any request
and thus its queue will be empty

very conservative approach;
all actions (conflicting and non conflicting
actions) are executed in timestamp order

52 ECE 677, Concurrency Control S. Hariri

Optimistic Concurrency Control

Disadvantage of locking schemes
lock maintenance

pay high overhead most of time, but in worst case
scenario you need it

probability of accessing the same data is 1/n

lock can result in deadlock
transactions maybe aborted and only then locks are
released
 => reduce potential concurrency

53 ECE 677, Concurrency Control S. Hariri

Optimistic Concurrency Control 1

Assume that most of the time, probability
of conflict is low.

Transactions allowed to proceed in
parallel until close transaction request
from client.

Upon close transaction, checks for
conflict; if so, some transactions
aborted.

54 ECE 677, Concurrency Control S. Hariri

Optimistic Concurrency 2

Read phase
Transactions have tentative version of data items it

accesses.
Tentative versions allow transactions to abort

without making their effect permanent.
Validation phase

Executed upon close transaction.
Checks serially equivalence.
If validation fails, conflict resolution decides which

transaction(s) to abort.

55 ECE 677, Concurrency Control S. Hariri

Optimistic Concurrency 3

Write phase
If transaction is validated, all of its
tentative versions are made permanent.
Read-only transactions commit immediately.
Write transactions commit only after their
tentative versions are recorded in permanent
storage.

56 ECE 677, Concurrency Control S. Hariri

Optimistic Concurrency Control (cont)

In optimistic scheme, it assumes
transactions are seldom have data
conflicts so

read requests are performed immediately
write requests are recorded in a tentative form invisible to
other transactions
The above two steps are the first phase.
when Tclose is received, the transaction is validated

if successful, the tentative change are made permanent and T
commits

else, T is aborted and delivers Abort

57 ECE 677, Concurrency Control S. Hariri

Preceding Concurrent Transactions (cont)

The validation test proceeds as follows :
1. It compares Tj start-tn with Ti finish_tn for each transaction

Ti in the list, passing over all transactions that were completed
before Tj started

2. It next considers all the transactions in the list that
committed between Tj start-tn and Ti finish_tn . The current
transaction Tj only passes the test if the writes of Ti did not
affect any of the same data items read by Tj.

3. Lastly it considers transactions whose second phase was
partially concurrent with the second phase of the current
transaction. These transactions should not have updated any
items that Tj read or updated

58 ECE 677, Concurrency Control S. Hariri

Validation Process

Read and write sets of a T are
compared with the write sets of all
concurrent transactions that have
completed 1st phase before T
(preceding Ts)

if common elements exist, the validation fails => T is
aborted
else, validation is successful

59 ECE 677, Concurrency Control S. Hariri

Preceding Concurrent Transactions

each T is given a transaction number, tn, at the end of 1st phase
when a validate succeeds, its info is stored in preceding T List
which contains start-tn and write set
told is deleted when Tj x start-tn > Told x finish_tn

start finish write

Ti
Tj

Ti

Tj
Tj

Tj

commit

commit

time

Three ways transactions may overlap in time

(1)

read

(2)

(3)

60 ECE 677, Concurrency Control S. Hariri

Comparison of Methods
 for Concurrency Control

time stamping and locking schemes detect conflicts as
each data item is accessed

timestamps have additional information that allow some transactions to
proceed while they can not in locking method

Optimistic concurrency control allows transaction to
proceed and abort them when conflicts occur
 => efficient with low conflicts
locking has been widely used in database systems and
file servers

