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Main Issues (cont) 

◆ Granularity and structure 

–  granularity refers to the size of sharing unit that can 
be uniform chunks of memory or data structures: 
byte, page or complex data structure 

–  structure refers to the arrangement of shared data 
•  most systems view DSM as a linear array of words 

–  small pages: increased parallelism -> increase in 
directory size 

–   large pages: reduce paging overhead, but increase 
sharing overhead 



Main Issues (cont) 
◆  Replacement Strategies 

–  Similar to caching mechanisms in MP 
–  In cache systems, LRU is often used 
–  In DSM, shared pages need to be given higher 

priority than exclusively owned pages => they could 
be replaced first 

◆  Synchronization Primitives: 
–  Coherence protocols must ensure the consistency of 

shared data 
–  DSM must allow simultaneous access to shared data 

on different machines. (single writer, multiple 
readers, etc.) 



2) Memory Coherence, Access Synchronization 
◆ Strict Consistency Model 

 any read to a certain memory location returns the 
value stored by most recent write operation to 
that address, irrespective of the locations of the 
processors performing the read and the write 
operation. 

Behavior of strict consistence model 

time 
Processor 1: 

Processor 2: 

w(x) 1 

r(x) 1 r(x) 5 

w(x) 5 



◆ Sequential Consistency Model 
 if the result of any execution is the same as if the 
operations of all processors were executed in the 
same sequential order, and the operations of each 
individual processor appear in this sequence in the 
order specified by the program. 

◆ Causal Consistency Model 
 writes that are potentially causally related must be 
seen by all processors in the same order, writes that 
are not potentially causally related may be seen in a 
different order on different machines.  



◆  Causal Consistency Model (cont.) 

 (a) A violation of causal memory. 
 (b) A correct sequence of events in causal memory. 
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◆ Processor Consistency Model 
 writes done by a single processor are seen by all other 
processors in the order in which they were written on 
that processor, but writes from different processors may 
be seen in a different order by different processors.  
 if w11 and w12 are two writes performed by processor 1 
in that order, and w21 and w22 are performed by 
processor 2 in that order. 

◆  A processor consistency model guarantees that all 
procesors see the write in the order on which written on 
that processor, i.e., [(w11, w12), (w21, w22)] 



•  Release Consistency Model  
 

A valid event sequence for release consistency. 

P1: 

P2: 

w(x)1  w(x)2 

r(x)1 P3: 

Acq(L)   Rel(L) 

Rel(L) Acq(L)  r (x) 2    



Strict Consistency 
A read return the most recently written value 

Sequential Consistency 
The result of an execution appears some interleaving of 

operations of the individual nodes when executed 
on a multithreaded sequential machine 

Processor Consistency 
writes issued by each individual 
node are never seen out of order, 
but the order of writes from two 
different nodes can be observed 

differently 

Weak Consistency 
The programmer enforces consistency 

using synchronization operators 
guaranteed to be sequentially consistent 

Release Consistency 
weak consistency with two types of synchronization 

operations : acquire and release. Each type of 
operator is guaranteed to be processor consistent 



Advantages of Distributed  Shared 
Memory 

◆  a simpler abstraction that is well understood by programmer 
◆  the shared memory system hides the remote communication 

mechanism and allows complex structures to be passed by 
reference 

◆  in message passing model, the programmer must be aware of 

–  data movement between all processes 
–  it is difficult to pass complex data structures 
–  in general, distributed shared memory 

application runs slower than message passing 
based applications 



Similar Systems 

◆  CPU Cache memories in shared memory multiprocessors 
◆  local memories in shared memory multiprocessors with 

nonuniform memory access (NUMA) times 
◆  distributed caching in network file systems 
◆  distributed databases 
◆  all these system attempt to minimize the access time to 

potentially shared data that needs to be kept consistent 
◆  for performance analysis, communication costs are abstracted in 

terms of number of messages sent and the number of packet 
events 



Distributed Shared Memory Algorithms 
(cont) 
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Central-Server Algorithm 

◆  this algorithm requires two messages for each data 
access 
–  one from the process requesting the access 
–  the second contains the data server’s response 
–  each data access requires four packet events 
–  central server might become the bottleneck 

•  load can be reduced by distributing shared data over 
multiple servers 

•  a simpler method is to partition data based on server 
address 



Migration Algorithm 

◆  the data is always migrated to the site where it is accessed 
(SRSW protocol) 

–  to reduce costs, blocks are migrated  
–  if access behavior does not follow locality of reference 

property, thrashing can occur between hosts 
◆  it can be integrated with local virtual memory system if the block 

size chosen equal to that of the local virtual memory 
–  access to a remote page triggers a page fault so that page fault 

handler can bring requested pages from other hosts 
•  to improve performance, one can assign managers to locate certain 

data blocks 



Read-Replication Algorithm 
◆  the problem with the previous techniques is the sequential 

access to the data block 
◆  replication can reduce the average cost of read operations 

–  write operations might be more expensive since replicas may 
have to be invalidated or updated to maintain consistency 

–  it is okay if the ratio of read to write is high 
◆  replication can be added to migration algorithm which results 

(MRSW) 
–  for a read operation to a remote block, node needs first to acquire read-

only copy of the requested block  
–  for a write operation to a block that is not local or node does not have 

write access to, all replica blocks must be invalidated before write can 
proceed 



Coherent Protocols 
◆  Write-Invalidate Protocol: 

–  a write to a shared data causes the invalidation of all copies 
except one before the write can proceed. 

–  once invalidated, copies are no longer accessible 
–  disadvantage: irrespective of whether  all other nodes will 

use this data or not 
◆  Write-Update Protocol: 

–  a write to a shared data causes all copies to that data to be  
updated. 

–  more difficult to implement because a new value has to be 
sent instead of invalidation. 



Full-Replication Algorithm 

◆  multiple readers/multiple writers (MRMW) protocol 
◆  access to data must properly sequenced or controlled to 

ensure consistency 
–  needs to globally sequence the write operations 
–  intended modifications are sent to the sequencer 

that assigns the next sequence number and 
multicasts the modification with this sequence 
number 

•  each site processes broadcast write operations 
in sequence number order 



Performance measure 

–  it needs to take into account the cost of 
accessing local and remote data blocks 

– comparative analysis 
•  we do pair-wise comparisons to illustrate 

the conditions under which one algorithm 
might outperform another 

•  we equate their cost to derive a curve along 
which they yield similar performance 



Performance Analysis 

◆  the parameters that characterize the costs of shared 
data access are 
–  p: cost of sending or receiving a short packet 
–  P: cost of sending or receiving a data block 

•  assume P/p equal to 20 

–  S: number of sites participating in distributed shared 
memory 

–  r: Read/Write ratio 
–  f: probability of an access fault on a nonreplicated data block 
–  f `: probability of an access fault on replicated data blocks 



Performance Analysis-Cont. 

◆ Simplified Assumptions: 
–  the message traffic will not cause network 

congestion so we can ignore network  bandwidth 
occupied by messages 

–  server congestion is not a serious to significantly 
delay remote access 

–  the cost of accessing local data is negligible when 
compared to that associated with remote data access 

–  message passing is reliable so the cost of 
retransmission can be ignored 



Performance Measures 
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Central Server v.s. Read Replication 
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Central Server v.s. Read Replication- 
Cont. 

–  for small number of sites and high read/write ratio, 
read replication performs better 

–  If the number of sites increases, the update cost 
increases and that makes the central server better. 

◆  Comments: 
–  no single algorithm is good for all applications 
–  algorithms need to be adaptive to application 

characteristics 



Central Server v.s. Full Replication 
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Central Server versus Full Replication 

◆ these represent the two extremes: one is 
completely centralized, the other is 
completely distributed and replicated 

◆ for values of S up to about 20, full 
replication is better as long as r is 5 or 
higher 



Migration v.s. Read Replication 
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Migration v.s. Read Replication-Cont. 

◆ read replication reduces block 
fault rate 

◆ read replication can outperform 
migration for a vast majority of 
applications 



Read Replication v.s. Full Replication 
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Read Replication v.s. Full Replication 

◆  Their performance depends on: 
•  degree of replication 
•  read/write ratio 
•  degree of locality in read applications 

◆  Generally speaking, full replication performs poorly 
for large systems and high update frequency (low r) 

 



Distributed Shared Memory Algorithms 
◆  Central server: one server responsible for serving all accesses to shared data 

and maintains the only copy of the shared data. 
◆  Migration (Single reader / single writer (SRSW)): Data is migrated to the site 

where it is accessed. 
◆  Read Replication: replication is done by allowing either 

–  one site read /write or 
–  multiple sites of read copies of a block 

◆  Full Replication:  

–  allows data blocks to be replicated while being 
written to (MWMR) protocol 

–  use a single gap-free sequencer for write operation 



Observations 

◆  central server is simple to implement 

–  it is sufficient for infrequent access to shared data 
especially if R/W is low 

◆  locality of reference and high block hit ratio is usually high 

–  block migration and replication becomes 
advantageous 

◆  read replication seems a good compromise and work fine in most 
applications 



DSM Classification 
◆  Implementation Level 

–  Hardware or software or hybrid 
◆   Architecture Configuration 

–   describes the system on which the DSM is running 
◆   Shared Data Organization 

–  Structured/non-structured data , objects, language data type 
◆  Granularity of Coherence unit 

–  Word, cache block, page, or data structure (object) 
◆  DSM Algorithm (SRSW, MRSW, and MRMW 
◆   Management Responsibility 

–  Centralized or distributed 
◆   Consistency Model 
◆   Coherence Control Protocol 

–  Write invalidate or write-update coherence protocol 



Distributed Shared Memory (DSM) 

◆  Introduction 
◆  Shared Memory Systems 
◆  Distributed Shared Memory Systems 
◆  Advantage of DSM Systems 



Distributed Shared Memory (DSM) Systems 
References: 
◆  Nitzberg Bill and Virginia Lo. “Distributed Shared Memory: A survey of 

issues and algorithms.”  IEEE Computer August 1991 
◆  Stumm, Michael and Songnian Zhou. “Algorithms Implementing Distributed 

Shared Memory.” IEEE Computer  May 1990 
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Distributed Shared Memory Systems 

◆  Page-based Distributed Shared Memory Systems, such 
as IVY, CVM 

 
◆  Shared Variable Distributed Shared Memory Systems, 

such as Munin 
◆  Object-based Distributed Shared Memory Systems, 

such as Linda, Orca 



Case study: IVY 

◆  IVY system (Integrated shared Virtual Memory 
at Yale) 
–  first DSM implementations with strict 

consistence and invalidate protocol(MRSW) 
–  algorithms are based on centralized and 

distributed techniques for solving coherence 
problem 

–  a prototype is implemented on Appolo ring 



Case Study:IVY-Cont. 
◆  Development algorithms: 

1. Page synchronization: 
•  write-invalidate is chosen in IVY 
•  write-update: it is not feasible because of required HW 

support and high network latency. 
2. Page ownership  

•  fixed: suitable for algorithms that do not migrate data 
•  dynamic: it is chosen in IVY system 

 => Class belong to Migration and Replication. 



Case study: IVY (cont) 

◆  Read Replication Algorithms 
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Read Replication 
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Case study: IVY (cont) 
Page contains information: 
◆  access: page accessibility 
◆  copy set: processor number who has read copy 
◆  lock: synchronize multiple page faults 
1. Centralized Manager: 

–  maintains a table INFO which has entry for each page: entry fields: 
(1) owner 
(2) copy set: list of all processors with Read copies 
(3) lock 

–  other processors have two fields: access and lock 
–  on Read fault: the manager is contacted to get copy 

–  on Write fault: similar way, but the manager invalidates the owner 
copy. 



Case study: IVY (cont) 

2. Fixed distributed Managers: 

–  every processor is given a number of pages to 
manage. 

3. Dynamic Distributed Managers: 

–  keep track of ownership of all pages in each 
processor's local page table. 



◆ IVY: Page based DSM system (cont.) 
 - emulate the cache of a multiprocessor. 
 - run multiprocessor program without modification. 
 - implemented with sequential consistency model and 

 invalidation protocol (MRSW).  
 - the basic unit passing through the network is page. 
 - access to remote data is detected by MMU. 
 - fixed or dynamic page manager. 
 - maintain a copy set. 
 - use lock to synchronize multiple page fault. 
 - the only problem is the performance. 



Case study: PLUS 
◆  The PLUS system employs the write-update protocol 
◆  A memory coherent manager (MCM) per node. 
◆  MCM is responsible for maintaining the consistency. 
◆  A virtual page in the PLUS system corresponds to a list 

of replicas of a page. 
◆  One replica is designated to be the Master copy 
◆  The MCM is made aware of the other replicas through a 

distributed linked-list called copy-list 



Case Study:PLUS-Cont. 

◆  Read operation: 

–  if the address indicates local memory, the 
local memory is read 

– otherwise the local MCM sends a read 
request to its counterpart MCMs 

– The data is returned by the remote MCM 



Case study: PLUS (cont) 

◆ Write Operation: 
–  The writes are always performed first on the master 

copy and are then propagated to the copies linked 
by the copy-list. 

–  on a write fault, generated by local copy (not the 
master copy), then the update request is sent to the 
node containing the master copy 

–   once done,  further update propagation is 
performed. 



PLUS Write-Update 
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Case Study: MemNet (cont) 

◆  on Read Request: 
–  a message request travels around the token-ring until it 

reaches the MemNet devices that has the memory 
–  The request message is then converted into a data message 

that has the requested data. 
◆  on Write Request: 

–  similar to Read request, but non-owner nodes invalidate their 
copies. 

◆  Invalidation Message: 

–  when one node needs to write to a page, it needs to 
invalidate other copies. 

◆  Replacement Policy: Random: it has a large amount of memory. 



Case Study: MemNet 

◆  to improve the performance of data migration by using hardware 
◆  techniques 
◆  The machines are connected to a MemNet device 
◆  The device receives memory request (32-byte block). 
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CASE STUDIES- DASH  

◆ Stanford University Project 
◆ A Hardware implementation of DSM  

– A directory based coherence 
protocol 

– Realease Consistency semantics 



DASH DSM: Shared Remote Data 

DC sends data and  
invalidate count to  
requester. 
DC sends invalidate  
request to B 

New directory 
block entry 

copy is  
invalidated 

CPU issues 
write(read- 
exclusive) 
to home 
cluster 

Write  
completes 

Dirty 
Remote 

Copy 
on C 

2 

2c 

3 1 

4 

Cluster A 
(home cluster) 

Cluster B Cluster C 
(requesting cluster) 

<invalid 
request> 

<invalidate 
acknow- 

ledgment> 

<write request (read-exclusive)> 

<data and invalidate count> 



DASH DSM: Shared Dirty Data 

DC forwards request 
to owner cluster 

New directory 
block entry 

Dirty 
Remote 

Copy 
on C 

2 

4 

Cluster A 
(home cluster) 

Cluster B Cluster C 
(requesting cluster) 

<write request  
(read-exclusive)> <forward request 

DC sends  
acknowledgment 
to new owner 

5 

       DC sends 
       data to  
requester 
and ownership 
update message 
to home node 

3 CPU issues 
write(read- 
exclusive) 
to home 
cluster 

Write  
completes 

1 

4 

<data> 

<ack> 



METHER DSM 

◆  It is a DSM implemented on Sun Workstations 
◆  Processes share read, write, and execute access 
◆  Mether project objectives were: 

–  to demonstrate that DSM is practical even if page 
faults are handled in software 

–  better understanding the applications interface to 
DSM 

–  build a DSM on a NOW using conventional comm. 
protocols 



First Implementation of Mether  V0 

◆  V0 was operational in November 1988  
◆  it is a software MemNet: strong consistency and replicated only 

pages 
◆  Problems observed were: 

–  many programs used shared memory variables 
(locks, semaphores, etc.) for their synchronization 

–  synchronization traffic affect network performance 
–  programs spent significant amount of time checking 

unchanged variables 
–  packet deliver was unreliable 



Resolving the Problems with V0 

◆ Inconsistent memory 
–  a process may request the consistent copy, causing 

the uptodate copy to be transmitted over the 
network 

–  the process holding the consistent copy, sends the 
new version via a system call (network refresh) 

–  the local inconsistent copy will be discarded if it 
stays inconsistent for more than 5 seconds 

–  the next time it needs that purged page, it fetches 
the page from the network 



Resolving the Problems with V0- Cont. 

◆ Short Pages 
–  it is only 32 bytes to store important state variables 
–  page faults cause only 32 bytes overhead as 

opposed to 8192 byte page 
◆ User-driven page propagation 

–  pages can be out-of-date, Mether provides mechanisms to 
propagate new copies of a page 

•  It supports user-driven propagation; discard local inconsistent copy 
to force page fault during the next access 

•  In systems supporting multicast, a writer can cause its copy to be 
broadcast to all holders of inconsistent copies; network refresh 



Resolving the Problems with V0- Cont 

◆  Latency-incenstive Address Space 

–  Mether provides an address space that is latency 
insensitive 

–  it is used to support data-driven page fault  
–  it is used to experiment with high latency 

communications environment 



Resolving the Problems with V0- Cont 

◆  Data Driven page Faults 

–  in DSM, a page fualt always results in a request 
over the network for  a page 

–  in data-driven page fault, one process takes an 
action that causes another process’s page fault to be 
satisfied 

•  one process request a read, another process responds with 
a network refresh 



METHER DSM 

(1) The choice of the read-only space or the writable space is made  
      when the application maps in the Mether address space 
(2) The consistent space can be demand-driven only 
(3) Teh choice of full or short page and demand- or data-driven are  
      determened by two address bits in the Mether address space 
(4) If further applications demand it, we may opt for four different page sizes 
      - one more bit of address space 
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Mether DSM-Cont. 

Operation  Rule for subsets    Rule for supersets 
Mapping a  All subsets must    Supersets need not be present 
page in   be present 
Pagein from   All subsets paged in   No supersets paged in 
the network 
Pageout    All subsets paged in   All supersets left paged 

      in but unmapped 
Lock   All subsets must be present;  No supersets locked but must 

  if all are present all are locked;  be present; all are unmapped; 
  otherwise, the lock fails and  nonpresent supersets are 
  any nonpresent subsets are  marked wanted 
  marked wanted 

Page fault  All subsets must be present  Supersets need not be present 
Purge   All consistent subsets are purged  Supersets are not affected 



CapNet- A distributed Shared Memory 
for WANS 

◆  There are important differences between LANs and WANs 

–  WANs have much larger latency 
–  WANs can not effectively support broadcast 
–  WANs have traditionally been bandwidth constrained 

◆  Since broadcast is expensive,  directory of page locations should be maintained by 
some page manager 

–  Owner is defined as the host that made the last modifications 
to a given page 

–  an owner honor a read request by sending the page and 
updating its copyset 

–  a write request is honored by transfering ownership to the 
requesting host 



CapNet Page-Location Scheme 

◆  augment the packet switches with the information 
required to locate pages 

◆  by distributing page table into network switches, the 
network can route a page request to the owner directly 

◆  Each switch has a page table that indicates the 
outgoing hob leading to the owner of the page; similar 
to the routing table 

◆  a host requesting a page, it is sent over the network 
that finds the page and transfers it to the requester; 
only two messages are used 
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Distributed Shared Memory 

Coularis, Dollimore and Kindberg, Distributed Systems, 
Concepts and Design, Chapter 18 

prepared by James Deak 
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Distributed Shared Memory 

◆  Distributed Shared Memory (DSM) allows programs 
running on separate computers to share data without 
the programmer having to deal with sending messages. 

◆  Instead underlying technology will send the messages 
to keep the DSM consistent (or relatively consistent) 
between computers. 

◆  DSM allows programs that used to operate on the 
same computer to be easily adapted to operate on 
separate computers. 
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Introduction 

◆  Programs access what appears to them to be normal 
memory. 

◆  Hence, programs that use DSM are usually shorter and 
easier to understand than programs that use message 
passing. 

◆  However, DSM is not suitable for all situations.  
Client-server systems are generally less suited for 
DSM, but a server may be used to assist in providing 
DSM functionality for data shared between clients. 
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Figure 18.1 The distributed shared 
memory abstraction 
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DSM History 

◆  Memory mapped files started in the MULTICS operating system in the 
1960s. 

◆  One of the first DSM implementations was Apollo.  One of the first system 
to use Apollo was Integrated shared Virtual memory at Yale (IVY). 

◆  DSM developed in parallel with shared-memory multiprocessors. 
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DSM implementations 

◆  Hardware: Mainly used by shared-memory 
multiprocessors.  The hardware resolves LOAD and 
STORE commands by communicating with remote 
memory as well as local memory. 

◆  Paged virtual memory: Pages of virtual memory get 
the same set of addresses for each program in the DSM 
system.  This only works for computers with common 
data and paging formats.  This implementation does 
not put extra structure requirements on the program 
since it is just a series of bytes. 
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DSM Implementations (continued) 

◆  Middleware: DSM is provided by some languages and middleware without 
hardware or paging support.  For this implementation, the programming 
language, underlying system libraries, or middleware send the messages to 
keep the data synchronized between programs so that the programmer does 
not have to. 
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Efficiency 

◆  DSM systems can perform almost as well as equivalent message-passing 
programs for systems that run on about 10 or less computers. 

◆  There are many factors that affect the efficiency of DSM, including the 
implementation, design approach, and memory consistency model chosen. 
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Design approaches 

◆  Byte-oriented: This is implemented as a contiguous 
series of bytes.  The language and programs determine 
the data structures. 

◆  Object-oriented: Language-level objects are used in 
this implementation.  The memory is only accessed 
through class routines and therefore, OO semantics can 
be used when implementing this system. 

◆  Immutable data: Data is represented as a group of 
many tuples.  Data can only be accessed through read, 
take, and write routines. 



73 

Memory consistency 

◆  To use DSM, one must also implement a distributed 
synchronization service.  This includes the use of 
locks, semaphores, and message passing. 

◆  Most implementations, data is read from local copies 
of the data but updates to data must be propagated to 
other copies of the data. 

◆  Memory consistency models determine when data 
updates are propagated and what level of inconsistency 
is acceptable. 
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Figure 18.3 Two processes accessing 
shared variables 

a := a + 1;	

b := b + 1;	


br := b;	

a	
r := a;	

if(ar ≥ br) then	

       print ("OK");	


Process 1	
 Process 2	
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Memory consistency models 

◆  Linearizability or atomic consistency is the strongest 
model.  It ensures that reads and writes are made in the 
proper order.  This results in a lot of underlying 
messaged being passed. 

◆  Sequential consistency is strong, but not as strict.  
Reads and writes are done in the proper order in the 
context of individual programs. 
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Memory consistency models 
(continued) 

◆  Coherence has significantly weaker consistency.  It 
ensures writes to individual memory locations are 
done in the proper order, but writes to separate 
locations can be done in improper order. 

◆  Weak consistency requires the programmer to use 
locks to ensure reads and writes are done in the proper 
order for data that needs it. 
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Figure 18.4 Interleaving under sequential 
consistency 

br := b;	

ar	
 := a;	

if(ar ≥ br) then	

       	
print ("OK");	


Time	

Process 1	


Process 2	


a := a + 1;	

b := b + 1;	


read	


write	
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Update options 

◆  Write-update:  Each update is multicast to all programs.  Reads are 
performed on local copies of the data. 

◆  Write-invalidate: A message is multicast to each program invalidating their 
copy of the data before the data is updated.  Other programs can request the 
updated data. 
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Figure 18.5 
DSM using write-update 

time

time

a := 7;
b := 7;

if (b=8) then
   print("after");

if(a=7) then
    b := b+1;

...

if(b=a) the n
   print("before");

time

updates
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Granularity 

◆  Granularity is the amount of data sent with each 
update. 

◆  If granularity is too small and a large amount of 
contiguous data is updated, the overhead of sending 
many small messages leads to less efficiency. 

◆  If granularity is too large, a whole page (or more) 
would be sent for an update to a single byte, thus 
reducing efficiency. 
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Figure 18.6 Data items laid out over 
pages 

A B

page n + 1page n
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Trashing 

◆  Thrashing occurs when network resources are exhausted, and more time is 
spent invalidating data and sending updates than is used doing actual work. 

◆  Based on system specifics, one should choose write-update or write-
invalidate to avoid thrashing. 
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Sequential consistency and Ivy case 
study 

◆  This model is page-based.  A single segment is shared 
between programs. 

◆  The computers are equipped with a paged memory 
management unit. 

◆  The DSM restricts data access permissions temporarily 
in order to maintain sequential consistency. 

◆  Permissions can be none, read-only, or read-write. 
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Sequential consistency and Ivy case 
study (continued) 

◆  If a program tries to do more than it has permission 
for, a page fault occurs and the program is block until 
the page fault is resolved. 

◆  Since this DSM is page-based, write-update is only 
used if writes can be buffered.  Otherwise several 
consecutive updates to the same memory location or 
adjacent memory locations would result in several 
multicasts of the same page being updated. 
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Figure 18.7 System model for page-
based DSM 

Kernel

Process accessing
paged DSM segment

Pages transferred o ver network

Kernel redirects
page faults to
user-level
handler
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Sequential consistency and Ivy case 
study (continued) 

◆  If writes cannot be buffered, write-invalidate is used. 
◆  The invalidation message acts as requesting a lock on 

the data. 
◆  When one program is updating the data it has read-

write permissions and everyone else has no 
permissions on that page. 

◆  At all other times, all have read-only access to the 
page. 
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Figure 18.8 State transitions under 
write-invalidation 

Single writer	
 Multiple reader	


W	

(invalidation)	


R	

P	
W	
 writes;	

none read	


P	
R1	
, P	
R2	
,..P	
Rn	
 read;	

none write	


R	
W	

(invalidation)	


Note: R = read fault occurs; W = write fault occurs.  
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Sequential consistency and Ivy 
case study: State transitions 

◆  When a program tries to write to a page for which it 
does not have read-write permission, a page fault 
occurs.  An invalidate message is sent to all other 
programs.  This sets the page permissions for those 
programs to none, and then the DSM system sets the 
page permissions for the writing program to read-write 
and unblocks it from the page fault. 

◆  Two programs might request write access at close to 
the same time. 
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Sequential consistency and Ivy 
case study: State transitions 

◆  If a program attempts to read a page it does not have 
permissions for a page fault occurs.  The DSM system (on 
behalf of the reading program) will send a message  (with the 
latest sequence number of its copy of the page) to the owner of 
the page.  If the page owner determines the reader’s sequence 
number does not match its sequence number of the page, it will 
send the whole page to the reading program.  It will then grant 
read access to the page.  If the page owner determines it does 
not need to access the page soon, it may transfer ownership to 
another program. 
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Figure 18.9 Central manager and 
associated messages 

Page   Owner
no.

Manager

Current ownerFaulting process

1. page no., access (R/W) 2. requestor,  page no.,  access

3.  Page

......... ........
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Sequential consistency and Ivy 
case study: Invalidation protocol 

◆  A program must know who is the owner of the page that it 
needs.  For this, they contact the central manager. 

◆  The manager may be just another program in the DSM system, 
or it may be a separate server. 

◆  When a page fault occurs due to inappropriate permissions, the 
message requesting access is actually sent to the central 
manager.  The manager determines the page owner and 
forwards the message requesting access to the page owner.  If 
the request is for a write page fault, the page ownership is 
transferred by the central manager to the requester. 
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Sequential consistency and Ivy 
case study: Invalidation protocol 
◆  For a write fault, the page’s previous owner sends the page and the page’s 

copy set to the new owner.  The new owner performs the invalidation when 
it receives the page and copy set – it sends the invalidation message to the 
members of the copy set (excluding the previous owner who invalidate 
itself), thus revoking their read access to no access. 
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Sequential consistency and Ivy 
case study: Invalidation protocol 

◆  A central manager may become a performance 
bottleneck.  There are a few alternatives: 

◆  A fixed distributed page management where on 
program will manage a set of pages for its lifetime 
(even if it does not own them). 

◆  A multicast-based management where the owner of a 
page manages it, read and write requests are multicast, 
only the owner answers. 

◆  A dynamic distributed system where each program 
keeps a set of the probable owner(s) of each page. 
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Figure 18.10 Updating probOwner 
pointers – slide 1 

B C D

A

E

OwnerOwner

(a) probOwner pointers just before process A takes a page fault for a page owned by E 
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Sequential consistency and Ivy case 
study: Dynamic distributed 
manager 
◆  Initially each program receives each pages owner and 

populates its probable ownership table. 
◆  When an owner transfers ownership, it will update its 

own probable ownership table with the new owner.  
(This guarantees at least 2 programs know the correct 
owner.) 

◆  When a program receives an invalidation message for 
a page, it updates its table to list the sender of that 
message as the owner. 
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◆  When a program requests access to a page, it sends the request 
to whoever is listed in its probable owner table.  When it 
receives the page, it will update its probable owner table with 
the sender of the page. 

◆  If a program that receives a request for access does not own the 
page, it will forward the request to whoever is listed for the 
page in its probable owner table.  It will then update its 
probable owner table to list the requester.  Even if the requester 
does not become the new owner, it is about to find out who the 
correct owner is.  By doing this the number of hops that a 
request can take before reaching the correct owner is limited. 

Sequential consistency and Ivy case 
study: Dynamic distributed 
manager 
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Figure 18.10 Updating probOwner 
pointers – slide 2 

(b) Write fault: probOwner pointers after A's write request is forwarded 

B C D

A

E

Owner

Owner
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Figure 18.10 Updating probOwner 
pointers – slide 3 

(c) Read fault: probOwner pointers after A's read request is forwarded 

B C D

A

E

OwnerOwner
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Release consistency and Munin case 
study 

◆  Release consistency is weaker than sequential consistency, but cheaper to 
implement. 

◆  Release consistency reduces overhead.  It relies on the fact that programmers 
can use semaphores, locks, and barriers to achieve enough consistency the 
system may need. 
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Release consistency and Munin 
case study: Memory accesses 
◆  Types of memory accesses: 

– Competing accesses 
•  They may occur concurrently – there is no enforced 

ordering between them. 
•  At least one is a write 

– Non-competing or ordinary accesses 
•  All read-only access, or enforced ordering 
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Release consistency and Munin 
case study: Memory accesses 
◆  Competing memory accesses are divided into two categories: 

– Synchronization accesses are concurrent and 
contribute to synchronization.  Examples include 
releasing a lock or a test-and-set operation. 

– Non-synchronization accesses are concurrent but do 
not contribute to synchronization. 
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Figure 18.11 Timeline for performing 
a DSM read or write operation 

P issues o	


o performed with respect to P’ at time t 

o performed (complete) 

Real time	
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Release consistency requirements 

◆  To achieve release consistency, the system must: 

– Preserve synchronization with locks, etc. 
– Gain performance by allowing asynchronous 

memory operations. 
– Limit the overlap between memory operations. 
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Release consistency requirements 

◆  One must acquire appropriate permissions before performing memory 
operations. 

◆  All memory operations must be performed before releasing memory. 
◆  Acquiring permissions and releasing memory  
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Munin 

◆  Munin had programmers use acquireLock, 
releaseLock, and waitAtBarrier. 

◆  Munin allows programmers to mark the way data is 
shared.  Munin optimizes DSM based on this.  These 
marks can also pair locks and data, which guarantees 
the user has the data before accessing it. 

◆  Munin sends updates/invalidations when locks are 
released.  An alternative has the update/invalidation 
sent when the lock is next acquired 
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Figure 18.12 Processes executing on 
a release-consistent DSM 

Process 1: 	

	
acquireLock(); 	
 	
 	
// enter critical section	

	
a := a + 1;	

	
b := b + 1;	

	
releaseLock(); 	
 	
 	
// leave critical section	


Process 2: 	

	
acquireLock(); 	
 	
 	
// enter critical section	

	
print ("The values of a and b are: ", a, b);	

	
releaseLock(); 	
 	
 	
// leave critical section	
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Munin: Sharing annotations 

◆  The following are options with Munin on the data item 
level: 
–  Using write-update or write-invalidate. 
–  Whether several copies of data may exist. 
–  Whether to send updates/invalidate immediately. 
–  Whether a data has a fixed owner, and whether that data can 

be modified by several at once. 
–  Whether the data can be modified at all. 
–  Whether the data is shared by a fixed set of programs. 
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Munin : Standard annotations 

◆  Read-only : Initialized, but not allow to be updated. 
◆  Migratory : Programs access a particular data item in turn. 
◆  Write-shared : Programs access the same data item, but write to 

different parts of the data item. 
◆  Producer-consumer : One program write to the data item.  A 

fixed set of programs read it. 
◆  Reduction : The data is always locked, read, updated, and 

unlocked 
◆  Result : Several programs write to different parts of one data 

item.  One program reads it. 
◆  Conventional : Data is managed using write-invalidate. 
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Other consistency models 

◆  Casual consistency – The happened-before relationship can be applied to 
read and write operations. 

◆  Pipelining RAM – Programs apply write operations through pipelining. 
◆  Processor consistency  - Pipelining RAM plus memory coherent. 



110 

Other consistency models 

◆  Entry consistency – Every shared data item is paired 
with a synchronization object. 

◆  Scope consistency – Locks are applied automatically 
to data objects instead of relying on programmers to 
apply locks. 

◆  Weak consistency – Guarantees that previous read and 
write operations complete before acquire or release 
operations. 
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