
Distributed Shared Memory (DSM)

◆ Introduction
◆ Shared Memory Systems
◆ Distributed Shared Memory Systems
◆ Advantage of DSM Systems

Distributed Shared Memory Systems

Distributed Shared Memory
(exists virtually)

Logical
location
of M1

C1

M1
Physical
location
of M1

C2

M2

C3

M3

Network

Distributed Shared Memory (DSM)

Main Issues (cont)

◆ Granularity and structure

–  granularity refers to the size of sharing unit that can
be uniform chunks of memory or data structures:
byte, page or complex data structure

–  structure refers to the arrangement of shared data
•  most systems view DSM as a linear array of words

–  small pages: increased parallelism -> increase in
directory size

–  large pages: reduce paging overhead, but increase
sharing overhead

Main Issues (cont)
◆  Replacement Strategies

–  Similar to caching mechanisms in MP
–  In cache systems, LRU is often used
–  In DSM, shared pages need to be given higher

priority than exclusively owned pages => they could
be replaced first

◆  Synchronization Primitives:
–  Coherence protocols must ensure the consistency of

shared data
–  DSM must allow simultaneous access to shared data

on different machines. (single writer, multiple
readers, etc.)

2) Memory Coherence, Access Synchronization
◆ Strict Consistency Model

 any read to a certain memory location returns the
value stored by most recent write operation to
that address, irrespective of the locations of the
processors performing the read and the write
operation.

Behavior of strict consistence model

time
Processor 1:

Processor 2:

w(x) 1

r(x) 1 r(x) 5

w(x) 5

◆ Sequential Consistency Model
 if the result of any execution is the same as if the
operations of all processors were executed in the
same sequential order, and the operations of each
individual processor appear in this sequence in the
order specified by the program.

◆ Causal Consistency Model
 writes that are potentially causally related must be
seen by all processors in the same order, writes that
are not potentially causally related may be seen in a
different order on different machines.

◆  Causal Consistency Model (cont.)

 (a) A violation of causal memory.
 (b) A correct sequence of events in causal memory.

P1:

P2:

w(x)1

r(x)1

r(x)1

w(x)2

w(x)3

r(x)1 r(x)2

P3:

P4:

P1:

P2:

w(x)1

r(x)2

w(x)2

w(x)3

r(x)1 r(x)2

P3:

P4:

(b) (a)

r(x)1

◆ Processor Consistency Model
 writes done by a single processor are seen by all other
processors in the order in which they were written on
that processor, but writes from different processors may
be seen in a different order by different processors.
 if w11 and w12 are two writes performed by processor 1
in that order, and w21 and w22 are performed by
processor 2 in that order.

◆  A processor consistency model guarantees that all
procesors see the write in the order on which written on
that processor, i.e., [(w11, w12), (w21, w22)]

•  Release Consistency Model

A valid event sequence for release consistency.

P1:

P2:

w(x)1 w(x)2

r(x)1 P3:

Acq(L) Rel(L)

Rel(L) Acq(L) r (x) 2

Strict Consistency
A read return the most recently written value

Sequential Consistency
The result of an execution appears some interleaving of

operations of the individual nodes when executed
on a multithreaded sequential machine

Processor Consistency
writes issued by each individual
node are never seen out of order,
but the order of writes from two
different nodes can be observed

differently

Weak Consistency
The programmer enforces consistency

using synchronization operators
guaranteed to be sequentially consistent

Release Consistency
weak consistency with two types of synchronization

operations : acquire and release. Each type of
operator is guaranteed to be processor consistent

Advantages of Distributed Shared
Memory

◆  a simpler abstraction that is well understood by programmer
◆  the shared memory system hides the remote communication

mechanism and allows complex structures to be passed by
reference

◆  in message passing model, the programmer must be aware of

–  data movement between all processes
–  it is difficult to pass complex data structures
–  in general, distributed shared memory

application runs slower than message passing
based applications

Similar Systems

◆  CPU Cache memories in shared memory multiprocessors
◆  local memories in shared memory multiprocessors with

nonuniform memory access (NUMA) times
◆  distributed caching in network file systems
◆  distributed databases
◆  all these system attempt to minimize the access time to

potentially shared data that needs to be kept consistent
◆  for performance analysis, communication costs are abstracted in

terms of number of messages sent and the number of packet
events

Distributed Shared Memory Algorithms
(cont)

Central Server

Client

Central Server Migration

Migration request

Data Block

Sequencer

Client

Write Update

Migration request

Data Block

Read replication Full replication

Central-Server Algorithm

◆  this algorithm requires two messages for each data
access
–  one from the process requesting the access
–  the second contains the data server’s response
–  each data access requires four packet events
–  central server might become the bottleneck

•  load can be reduced by distributing shared data over
multiple servers

•  a simpler method is to partition data based on server
address

Migration Algorithm

◆  the data is always migrated to the site where it is accessed
(SRSW protocol)

–  to reduce costs, blocks are migrated
–  if access behavior does not follow locality of reference

property, thrashing can occur between hosts
◆  it can be integrated with local virtual memory system if the block

size chosen equal to that of the local virtual memory
–  access to a remote page triggers a page fault so that page fault

handler can bring requested pages from other hosts
•  to improve performance, one can assign managers to locate certain

data blocks

Read-Replication Algorithm
◆  the problem with the previous techniques is the sequential

access to the data block
◆  replication can reduce the average cost of read operations

–  write operations might be more expensive since replicas may
have to be invalidated or updated to maintain consistency

–  it is okay if the ratio of read to write is high
◆  replication can be added to migration algorithm which results

(MRSW)
–  for a read operation to a remote block, node needs first to acquire read-

only copy of the requested block
–  for a write operation to a block that is not local or node does not have

write access to, all replica blocks must be invalidated before write can
proceed

Coherent Protocols
◆  Write-Invalidate Protocol:

–  a write to a shared data causes the invalidation of all copies
except one before the write can proceed.

–  once invalidated, copies are no longer accessible
–  disadvantage: irrespective of whether all other nodes will

use this data or not
◆  Write-Update Protocol:

–  a write to a shared data causes all copies to that data to be
updated.

–  more difficult to implement because a new value has to be
sent instead of invalidation.

Full-Replication Algorithm

◆  multiple readers/multiple writers (MRMW) protocol
◆  access to data must properly sequenced or controlled to

ensure consistency
–  needs to globally sequence the write operations
–  intended modifications are sent to the sequencer

that assigns the next sequence number and
multicasts the modification with this sequence
number

•  each site processes broadcast write operations
in sequence number order

Performance measure

–  it needs to take into account the cost of
accessing local and remote data blocks

– comparative analysis
•  we do pair-wise comparisons to illustrate

the conditions under which one algorithm
might outperform another

•  we equate their cost to derive a curve along
which they yield similar performance

Performance Analysis

◆  the parameters that characterize the costs of shared
data access are
–  p: cost of sending or receiving a short packet
–  P: cost of sending or receiving a data block

•  assume P/p equal to 20

–  S: number of sites participating in distributed shared
memory

–  r: Read/Write ratio
–  f: probability of an access fault on a nonreplicated data block
–  f `: probability of an access fault on replicated data blocks

Performance Analysis-Cont.

◆ Simplified Assumptions:
–  the message traffic will not cause network

congestion so we can ignore network bandwidth
occupied by messages

–  server congestion is not a serious to significantly
delay remote access

–  the cost of accessing local data is negligible when
compared to that associated with remote data access

–  message passing is reliable so the cost of
retransmission can be ignored

Performance Measures

C c
 = 1

1
4 -	
⎛	

⎝	

⎜	
 ⎞	

⎠	

⎟	
 ×	

S
p

Cm = ()f P p× +2 4

Crr = f P p Sp
r

' × + +
+

⎡
⎣⎢

⎤
⎦⎥

2 4
1

C fr = ()
1

1
2

r
S p

+
× +

Central Server v.s. Read Replication

0

0.02

0.04

0.06

0.08

0.1

2 4 6 8 10 12 14 16 18 20

r = 3
r = 10

Number of site, S

R
ep

lic
at

ed
 b

lo
ck

 fa
ul

t r
at

e
f’

Central better

f ' =
4 1 1

44
1

−⎛
⎝
⎜ ⎞

⎠
⎟

+
+

S
S
r

Central Server v.s. Read Replication-
Cont.

–  for small number of sites and high read/write ratio,
read replication performs better

–  If the number of sites increases, the update cost
increases and that makes the central server better.

◆  Comments:
–  no single algorithm is good for all applications
–  algorithms need to be adaptive to application

characteristics

Central Server v.s. Full Replication

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16 18 20
Number of sites, S

R
ea

d/
w

rit
e

ra
tio

 r

Full-replication better

Central better

r = ()
1
4

1 3
1

S
S

− +
−

⎡
⎣⎢

⎤
⎦⎥

Central Server versus Full Replication

◆ these represent the two extremes: one is
completely centralized, the other is
completely distributed and replicated

◆ for values of S up to about 20, full
replication is better as long as r is 5 or
higher

Migration v.s. Read Replication

0

0.02

0.04

0.06

0.08

0.1

0.12

0.02 0.04 0.06 0.08 0.1

S=20,r=3
S=3, r=10

Replicated block fault rate, f ‘

N
on

re
pl

ic
at

ed
 b

lo
ck

 fa
ul

t r
at

e
f

Read-replication better

Migration better

f =
()

f S
r

' 1
44 1

+
+

⎡

⎣
⎢

⎤

⎦
⎥

Migration v.s. Read Replication-Cont.

◆ read replication reduces block
fault rate

◆ read replication can outperform
migration for a vast majority of
applications

Read Replication v.s. Full Replication

0

0.02

0.04

0.06

0.08

0.1

2 4 6 8 10 12 14 16 18 20

r = 10
r = 5

Number of sites, S

R
ep

lic
at

ed
 b

lo
ck

 fa
ul

t r
at

e
f’

Read-replication better

Full-replication better

f ' =
()

S
S r

+

+ +

2
44 1

Read Replication v.s. Full Replication

◆  Their performance depends on:
•  degree of replication
•  read/write ratio
•  degree of locality in read applications

◆  Generally speaking, full replication performs poorly
for large systems and high update frequency (low r)

Distributed Shared Memory Algorithms
◆  Central server: one server responsible for serving all accesses to shared data

and maintains the only copy of the shared data.
◆  Migration (Single reader / single writer (SRSW)): Data is migrated to the site

where it is accessed.
◆  Read Replication: replication is done by allowing either

–  one site read /write or
–  multiple sites of read copies of a block

◆  Full Replication:

–  allows data blocks to be replicated while being
written to (MWMR) protocol

–  use a single gap-free sequencer for write operation

Observations

◆  central server is simple to implement

–  it is sufficient for infrequent access to shared data
especially if R/W is low

◆  locality of reference and high block hit ratio is usually high

–  block migration and replication becomes
advantageous

◆  read replication seems a good compromise and work fine in most
applications

DSM Classification
◆  Implementation Level

–  Hardware or software or hybrid
◆  Architecture Configuration

–  describes the system on which the DSM is running
◆  Shared Data Organization

–  Structured/non-structured data , objects, language data type
◆  Granularity of Coherence unit

–  Word, cache block, page, or data structure (object)
◆  DSM Algorithm (SRSW, MRSW, and MRMW
◆  Management Responsibility

–  Centralized or distributed
◆  Consistency Model
◆  Coherence Control Protocol

–  Write invalidate or write-update coherence protocol

Distributed Shared Memory (DSM)

◆  Introduction
◆  Shared Memory Systems
◆  Distributed Shared Memory Systems
◆  Advantage of DSM Systems

Distributed Shared Memory (DSM) Systems
References:
◆  Nitzberg Bill and Virginia Lo. “Distributed Shared Memory: A survey of

issues and algorithms.” IEEE Computer August 1991
◆  Stumm, Michael and Songnian Zhou. “Algorithms Implementing Distributed

Shared Memory.” IEEE Computer May 1990

Shared memory

Memory

CPU

Memory

CPU

Memory

CPU

Node 1 Node 2 Node n

. . .

Network

Distributed Shared Memory Systems

◆  Page-based Distributed Shared Memory Systems, such
as IVY, CVM

◆  Shared Variable Distributed Shared Memory Systems,

such as Munin
◆  Object-based Distributed Shared Memory Systems,

such as Linda, Orca

Case study: IVY

◆  IVY system (Integrated shared Virtual Memory
at Yale)
–  first DSM implementations with strict

consistence and invalidate protocol(MRSW)
–  algorithms are based on centralized and

distributed techniques for solving coherence
problem

–  a prototype is implemented on Appolo ring

Case Study:IVY-Cont.
◆  Development algorithms:

1. Page synchronization:
•  write-invalidate is chosen in IVY
•  write-update: it is not feasible because of required HW

support and high network latency.
2. Page ownership

•  fixed: suitable for algorithms that do not migrate data
•  dynamic: it is chosen in IVY system

 => Class belong to Migration and Replication.

Case study: IVY (cont)

◆  Read Replication Algorithms

Fixed
Distributed Manager

Dynamic
Distributed manager

Read Replication

Centralized manager

Case study: IVY (cont)
Page contains information:
◆  access: page accessibility
◆  copy set: processor number who has read copy
◆  lock: synchronize multiple page faults
1. Centralized Manager:

–  maintains a table INFO which has entry for each page: entry fields:
(1) owner
(2) copy set: list of all processors with Read copies
(3) lock

–  other processors have two fields: access and lock
–  on Read fault: the manager is contacted to get copy

–  on Write fault: similar way, but the manager invalidates the owner
copy.

Case study: IVY (cont)

2. Fixed distributed Managers:

–  every processor is given a number of pages to
manage.

3. Dynamic Distributed Managers:

–  keep track of ownership of all pages in each
processor's local page table.

◆ IVY: Page based DSM system (cont.)
 - emulate the cache of a multiprocessor.
 - run multiprocessor program without modification.
 - implemented with sequential consistency model and

 invalidation protocol (MRSW).
 - the basic unit passing through the network is page.
 - access to remote data is detected by MMU.
 - fixed or dynamic page manager.
 - maintain a copy set.
 - use lock to synchronize multiple page fault.
 - the only problem is the performance.

Case study: PLUS
◆  The PLUS system employs the write-update protocol
◆  A memory coherent manager (MCM) per node.
◆  MCM is responsible for maintaining the consistency.
◆  A virtual page in the PLUS system corresponds to a list

of replicas of a page.
◆  One replica is designated to be the Master copy
◆  The MCM is made aware of the other replicas through a

distributed linked-list called copy-list

Case Study:PLUS-Cont.

◆  Read operation:

–  if the address indicates local memory, the
local memory is read

– otherwise the local MCM sends a read
request to its counterpart MCMs

– The data is returned by the remote MCM

Case study: PLUS (cont)

◆ Write Operation:
–  The writes are always performed first on the master

copy and are then propagated to the copies linked
by the copy-list.

–  on a write fault, generated by local copy (not the
master copy), then the update request is sent to the
node containing the master copy

–  once done, further update propagation is
performed.

PLUS Write-Update

Master Next-copy
= 1 on 2 X Master Next-copy

= 1 on 3 X Master Next-copy
= 1 on NIL X

3 MCM updates X

 MCM sends update
message to next copy 4

 MCM sends update
message to next copy

 MCM updates X

 MCM sends update
message to next copy

2

6

5

7 MCM updates X

 Update complete.
 MCM sends
 acknowledgement

8

Node 2 Page P X
Page table

MCM sends
write request
to node 2

1

2

4

6

8

1

Node 1

Node 2
Node 3

Node 4

Case Study: MemNet (cont)

◆  on Read Request:
–  a message request travels around the token-ring until it

reaches the MemNet devices that has the memory
–  The request message is then converted into a data message

that has the requested data.
◆  on Write Request:

–  similar to Read request, but non-owner nodes invalidate their
copies.

◆  Invalidation Message:

–  when one node needs to write to a page, it needs to
invalidate other copies.

◆  Replacement Policy: Random: it has a large amount of memory.

Case Study: MemNet

◆  to improve the performance of data migration by using hardware
◆  techniques
◆  The machines are connected to a MemNet device
◆  The device receives memory request (32-byte block).

Host Host Host

MemNet

. . . . Bus Interface
MemNet Cache

MemNet System

Cache

Interface

Host

Cache

Interface

Host

Cache

Interface

Host

Cache

Interface

Host

Cache

Interface

Host

Cache

Interface

Host

MemNet Project

Shared
memory

Host

Host

Host

Host

CASE STUDIES- DASH

◆ Stanford University Project
◆ A Hardware implementation of DSM

– A directory based coherence
protocol

– Realease Consistency semantics

DASH DSM: Shared Remote Data

DC sends data and
invalidate count to
requester.
DC sends invalidate
request to B

New directory
block entry

copy is
invalidated

CPU issues
write(read-
exclusive)
to home
cluster

Write
completes

Dirty
Remote

Copy
on C

2

2c

3 1

4

Cluster A
(home cluster)

Cluster B Cluster C
(requesting cluster)

<invalid
request>

<invalidate
acknow-

ledgment>

<write request (read-exclusive)>

<data and invalidate count>

DASH DSM: Shared Dirty Data

DC forwards request
to owner cluster

New directory
block entry

Dirty
Remote

Copy
on C

2

4

Cluster A
(home cluster)

Cluster B Cluster C
(requesting cluster)

<write request
(read-exclusive)> <forward request

DC sends
acknowledgment
to new owner

5

 DC sends
 data to
requester
and ownership
update message
to home node

3 CPU issues
write(read-
exclusive)
to home
cluster

Write
completes

1

4

<data>

<ack>

METHER DSM

◆  It is a DSM implemented on Sun Workstations
◆  Processes share read, write, and execute access
◆  Mether project objectives were:

–  to demonstrate that DSM is practical even if page
faults are handled in software

–  better understanding the applications interface to
DSM

–  build a DSM on a NOW using conventional comm.
protocols

First Implementation of Mether V0

◆  V0 was operational in November 1988
◆  it is a software MemNet: strong consistency and replicated only

pages
◆  Problems observed were:

–  many programs used shared memory variables
(locks, semaphores, etc.) for their synchronization

–  synchronization traffic affect network performance
–  programs spent significant amount of time checking

unchanged variables
–  packet deliver was unreliable

Resolving the Problems with V0

◆ Inconsistent memory
–  a process may request the consistent copy, causing

the uptodate copy to be transmitted over the
network

–  the process holding the consistent copy, sends the
new version via a system call (network refresh)

–  the local inconsistent copy will be discarded if it
stays inconsistent for more than 5 seconds

–  the next time it needs that purged page, it fetches
the page from the network

Resolving the Problems with V0- Cont.

◆ Short Pages
–  it is only 32 bytes to store important state variables
–  page faults cause only 32 bytes overhead as

opposed to 8192 byte page
◆ User-driven page propagation

–  pages can be out-of-date, Mether provides mechanisms to
propagate new copies of a page

•  It supports user-driven propagation; discard local inconsistent copy
to force page fault during the next access

•  In systems supporting multicast, a writer can cause its copy to be
broadcast to all holders of inconsistent copies; network refresh

Resolving the Problems with V0- Cont

◆  Latency-incenstive Address Space

–  Mether provides an address space that is latency
insensitive

–  it is used to support data-driven page fault
–  it is used to experiment with high latency

communications environment

Resolving the Problems with V0- Cont

◆  Data Driven page Faults

–  in DSM, a page fualt always results in a request
over the network for a page

–  in data-driven page fault, one process takes an
action that causes another process’s page fault to be
satisfied

•  one process request a read, another process responds with
a network refresh

METHER DSM

(1) The choice of the read-only space or the writable space is made
 when the application maps in the Mether address space
(2) The consistent space can be demand-driven only
(3) Teh choice of full or short page and demand- or data-driven are
 determened by two address bits in the Mether address space
(4) If further applications demand it, we may opt for four different page sizes
 - one more bit of address space

Short page
32 bytes

Full page
8192 bytes

Short page,
demand-driven

Full page,
demand-driven

Full page,
latency-insensitive

Short page,
latency-insensitive

Short page,
demand-driven

Full page,
demand-driven

Notes :

Writable(consistent) Read-only(inconsistent)

Mether DSM-Cont.

Operation Rule for subsets Rule for supersets
Mapping a All subsets must Supersets need not be present
page in be present
Pagein from All subsets paged in No supersets paged in
the network
Pageout All subsets paged in All supersets left paged

 in but unmapped
Lock All subsets must be present; No supersets locked but must

 if all are present all are locked; be present; all are unmapped;
 otherwise, the lock fails and nonpresent supersets are
 any nonpresent subsets are marked wanted
 marked wanted

Page fault All subsets must be present Supersets need not be present
Purge All consistent subsets are purged Supersets are not affected

CapNet- A distributed Shared Memory
for WANS

◆  There are important differences between LANs and WANs

–  WANs have much larger latency
–  WANs can not effectively support broadcast
–  WANs have traditionally been bandwidth constrained

◆  Since broadcast is expensive, directory of page locations should be maintained by
some page manager

–  Owner is defined as the host that made the last modifications
to a given page

–  an owner honor a read request by sending the page and
updating its copyset

–  a write request is honored by transfering ownership to the
requesting host

CapNet Page-Location Scheme

◆  augment the packet switches with the information
required to locate pages

◆  by distributing page table into network switches, the
network can route a page request to the owner directly

◆  Each switch has a page table that indicates the
outgoing hob leading to the owner of the page; similar
to the routing table

◆  a host requesting a page, it is sent over the network
that finds the page and transfers it to the requester;
only two messages are used

64

Distributed Shared Memory

Coularis, Dollimore and Kindberg, Distributed Systems,
Concepts and Design, Chapter 18

prepared by James Deak

65

Distributed Shared Memory

◆  Distributed Shared Memory (DSM) allows programs
running on separate computers to share data without
the programmer having to deal with sending messages.

◆  Instead underlying technology will send the messages
to keep the DSM consistent (or relatively consistent)
between computers.

◆  DSM allows programs that used to operate on the
same computer to be easily adapted to operate on
separate computers.

66

Introduction

◆  Programs access what appears to them to be normal
memory.

◆  Hence, programs that use DSM are usually shorter and
easier to understand than programs that use message
passing.

◆  However, DSM is not suitable for all situations.
Client-server systems are generally less suited for
DSM, but a server may be used to assist in providing
DSM functionality for data shared between clients.

67

Figure 18.1 The distributed shared
memory abstraction

Physical
memory

Process
accessing DSM

DSM appears as
memory in address
space of process

Physical
memory

Physical
memory

Distributed shared memory

68

DSM History

◆  Memory mapped files started in the MULTICS operating system in the
1960s.

◆  One of the first DSM implementations was Apollo. One of the first system
to use Apollo was Integrated shared Virtual memory at Yale (IVY).

◆  DSM developed in parallel with shared-memory multiprocessors.

69

DSM implementations

◆  Hardware: Mainly used by shared-memory
multiprocessors. The hardware resolves LOAD and
STORE commands by communicating with remote
memory as well as local memory.

◆  Paged virtual memory: Pages of virtual memory get
the same set of addresses for each program in the DSM
system. This only works for computers with common
data and paging formats. This implementation does
not put extra structure requirements on the program
since it is just a series of bytes.

70

DSM Implementations (continued)

◆  Middleware: DSM is provided by some languages and middleware without
hardware or paging support. For this implementation, the programming
language, underlying system libraries, or middleware send the messages to
keep the data synchronized between programs so that the programmer does
not have to.

71

Efficiency

◆  DSM systems can perform almost as well as equivalent message-passing
programs for systems that run on about 10 or less computers.

◆  There are many factors that affect the efficiency of DSM, including the
implementation, design approach, and memory consistency model chosen.

72

Design approaches

◆  Byte-oriented: This is implemented as a contiguous
series of bytes. The language and programs determine
the data structures.

◆  Object-oriented: Language-level objects are used in
this implementation. The memory is only accessed
through class routines and therefore, OO semantics can
be used when implementing this system.

◆  Immutable data: Data is represented as a group of
many tuples. Data can only be accessed through read,
take, and write routines.

73

Memory consistency

◆  To use DSM, one must also implement a distributed
synchronization service. This includes the use of
locks, semaphores, and message passing.

◆  Most implementations, data is read from local copies
of the data but updates to data must be propagated to
other copies of the data.

◆  Memory consistency models determine when data
updates are propagated and what level of inconsistency
is acceptable.

74

Figure 18.3 Two processes accessing
shared variables

a := a + 1;	

b := b + 1;	

br := b;	

a	
r := a;	

if(ar ≥ br) then	

 print ("OK");	

Process 1	
 Process 2	

75

Memory consistency models

◆  Linearizability or atomic consistency is the strongest
model. It ensures that reads and writes are made in the
proper order. This results in a lot of underlying
messaged being passed.

◆  Sequential consistency is strong, but not as strict.
Reads and writes are done in the proper order in the
context of individual programs.

76

Memory consistency models
(continued)

◆  Coherence has significantly weaker consistency. It
ensures writes to individual memory locations are
done in the proper order, but writes to separate
locations can be done in improper order.

◆  Weak consistency requires the programmer to use
locks to ensure reads and writes are done in the proper
order for data that needs it.

77

Figure 18.4 Interleaving under sequential
consistency

br := b;	

ar	
 := a;	

if(ar ≥ br) then	

 	
print ("OK");	

Time	

Process 1	

Process 2	

a := a + 1;	

b := b + 1;	

read	

write	

78

Update options

◆  Write-update: Each update is multicast to all programs. Reads are
performed on local copies of the data.

◆  Write-invalidate: A message is multicast to each program invalidating their
copy of the data before the data is updated. Other programs can request the
updated data.

79

Figure 18.5
DSM using write-update

time

time

a := 7;
b := 7;

if (b=8) then
 print("after");

if(a=7) then
 b := b+1;

...

if(b=a) the n
 print("before");

time

updates

80

Granularity

◆  Granularity is the amount of data sent with each
update.

◆  If granularity is too small and a large amount of
contiguous data is updated, the overhead of sending
many small messages leads to less efficiency.

◆  If granularity is too large, a whole page (or more)
would be sent for an update to a single byte, thus
reducing efficiency.

81

Figure 18.6 Data items laid out over
pages

A B

page n + 1page n

82

Trashing

◆  Thrashing occurs when network resources are exhausted, and more time is
spent invalidating data and sending updates than is used doing actual work.

◆  Based on system specifics, one should choose write-update or write-
invalidate to avoid thrashing.

83

Sequential consistency and Ivy case
study

◆  This model is page-based. A single segment is shared
between programs.

◆  The computers are equipped with a paged memory
management unit.

◆  The DSM restricts data access permissions temporarily
in order to maintain sequential consistency.

◆  Permissions can be none, read-only, or read-write.

84

Sequential consistency and Ivy case
study (continued)

◆  If a program tries to do more than it has permission
for, a page fault occurs and the program is block until
the page fault is resolved.

◆  Since this DSM is page-based, write-update is only
used if writes can be buffered. Otherwise several
consecutive updates to the same memory location or
adjacent memory locations would result in several
multicasts of the same page being updated.

85

Figure 18.7 System model for page-
based DSM

Kernel

Process accessing
paged DSM segment

Pages transferred o ver network

Kernel redirects
page faults to
user-level
handler

86

Sequential consistency and Ivy case
study (continued)

◆  If writes cannot be buffered, write-invalidate is used.
◆  The invalidation message acts as requesting a lock on

the data.
◆  When one program is updating the data it has read-

write permissions and everyone else has no
permissions on that page.

◆  At all other times, all have read-only access to the
page.

87

Figure 18.8 State transitions under
write-invalidation

Single writer	
 Multiple reader	

W	

(invalidation)	

R	

P	
W	
 writes;	

none read	

P	
R1	
, P	
R2	
,..P	
Rn	
 read;	

none write	

R	
W	

(invalidation)	

Note: R = read fault occurs; W = write fault occurs.

88

Sequential consistency and Ivy
case study: State transitions

◆  When a program tries to write to a page for which it
does not have read-write permission, a page fault
occurs. An invalidate message is sent to all other
programs. This sets the page permissions for those
programs to none, and then the DSM system sets the
page permissions for the writing program to read-write
and unblocks it from the page fault.

◆  Two programs might request write access at close to
the same time.

89

Sequential consistency and Ivy
case study: State transitions

◆  If a program attempts to read a page it does not have
permissions for a page fault occurs. The DSM system (on
behalf of the reading program) will send a message (with the
latest sequence number of its copy of the page) to the owner of
the page. If the page owner determines the reader’s sequence
number does not match its sequence number of the page, it will
send the whole page to the reading program. It will then grant
read access to the page. If the page owner determines it does
not need to access the page soon, it may transfer ownership to
another program.

90

Figure 18.9 Central manager and
associated messages

Page Owner
no.

Manager

Current ownerFaulting process

1. page no., access (R/W) 2. requestor, page no., access

3. Page

.........

91

Sequential consistency and Ivy
case study: Invalidation protocol

◆  A program must know who is the owner of the page that it
needs. For this, they contact the central manager.

◆  The manager may be just another program in the DSM system,
or it may be a separate server.

◆  When a page fault occurs due to inappropriate permissions, the
message requesting access is actually sent to the central
manager. The manager determines the page owner and
forwards the message requesting access to the page owner. If
the request is for a write page fault, the page ownership is
transferred by the central manager to the requester.

92

Sequential consistency and Ivy
case study: Invalidation protocol
◆  For a write fault, the page’s previous owner sends the page and the page’s

copy set to the new owner. The new owner performs the invalidation when
it receives the page and copy set – it sends the invalidation message to the
members of the copy set (excluding the previous owner who invalidate
itself), thus revoking their read access to no access.

93

Sequential consistency and Ivy
case study: Invalidation protocol

◆  A central manager may become a performance
bottleneck. There are a few alternatives:

◆  A fixed distributed page management where on
program will manage a set of pages for its lifetime
(even if it does not own them).

◆  A multicast-based management where the owner of a
page manages it, read and write requests are multicast,
only the owner answers.

◆  A dynamic distributed system where each program
keeps a set of the probable owner(s) of each page.

94

Figure 18.10 Updating probOwner
pointers – slide 1

B C D

A

E

OwnerOwner

(a) probOwner pointers just before process A takes a page fault for a page owned by E

95

Sequential consistency and Ivy case
study: Dynamic distributed
manager
◆  Initially each program receives each pages owner and

populates its probable ownership table.
◆  When an owner transfers ownership, it will update its

own probable ownership table with the new owner.
(This guarantees at least 2 programs know the correct
owner.)

◆  When a program receives an invalidation message for
a page, it updates its table to list the sender of that
message as the owner.

96

◆  When a program requests access to a page, it sends the request
to whoever is listed in its probable owner table. When it
receives the page, it will update its probable owner table with
the sender of the page.

◆  If a program that receives a request for access does not own the
page, it will forward the request to whoever is listed for the
page in its probable owner table. It will then update its
probable owner table to list the requester. Even if the requester
does not become the new owner, it is about to find out who the
correct owner is. By doing this the number of hops that a
request can take before reaching the correct owner is limited.

Sequential consistency and Ivy case
study: Dynamic distributed
manager

97

Figure 18.10 Updating probOwner
pointers – slide 2

(b) Write fault: probOwner pointers after A's write request is forwarded

B C D

A

E

Owner

Owner

98

Figure 18.10 Updating probOwner
pointers – slide 3

(c) Read fault: probOwner pointers after A's read request is forwarded

B C D

A

E

OwnerOwner

99

Release consistency and Munin case
study

◆  Release consistency is weaker than sequential consistency, but cheaper to
implement.

◆  Release consistency reduces overhead. It relies on the fact that programmers
can use semaphores, locks, and barriers to achieve enough consistency the
system may need.

100

Release consistency and Munin
case study: Memory accesses
◆  Types of memory accesses:

– Competing accesses
•  They may occur concurrently – there is no enforced

ordering between them.
•  At least one is a write

– Non-competing or ordinary accesses
•  All read-only access, or enforced ordering

101

Release consistency and Munin
case study: Memory accesses
◆  Competing memory accesses are divided into two categories:

– Synchronization accesses are concurrent and
contribute to synchronization. Examples include
releasing a lock or a test-and-set operation.

– Non-synchronization accesses are concurrent but do
not contribute to synchronization.

102

Figure 18.11 Timeline for performing
a DSM read or write operation

P issues o	

o performed with respect to P’ at time t

o performed (complete)

Real time	

103

Release consistency requirements

◆  To achieve release consistency, the system must:

– Preserve synchronization with locks, etc.
– Gain performance by allowing asynchronous

memory operations.
– Limit the overlap between memory operations.

104

Release consistency requirements

◆  One must acquire appropriate permissions before performing memory
operations.

◆  All memory operations must be performed before releasing memory.
◆  Acquiring permissions and releasing memory

105

Munin

◆  Munin had programmers use acquireLock,
releaseLock, and waitAtBarrier.

◆  Munin allows programmers to mark the way data is
shared. Munin optimizes DSM based on this. These
marks can also pair locks and data, which guarantees
the user has the data before accessing it.

◆  Munin sends updates/invalidations when locks are
released. An alternative has the update/invalidation
sent when the lock is next acquired

106

Figure 18.12 Processes executing on
a release-consistent DSM

Process 1: 	

	
acquireLock(); 	
 	
 	
// enter critical section	

	
a := a + 1;	

	
b := b + 1;	

	
releaseLock(); 	
 	
 	
// leave critical section	

Process 2: 	

	
acquireLock(); 	
 	
 	
// enter critical section	

	
print ("The values of a and b are: ", a, b);	

	
releaseLock(); 	
 	
 	
// leave critical section	

107

Munin: Sharing annotations

◆  The following are options with Munin on the data item
level:
–  Using write-update or write-invalidate.
–  Whether several copies of data may exist.
–  Whether to send updates/invalidate immediately.
–  Whether a data has a fixed owner, and whether that data can

be modified by several at once.
–  Whether the data can be modified at all.
–  Whether the data is shared by a fixed set of programs.

108

Munin : Standard annotations

◆  Read-only : Initialized, but not allow to be updated.
◆  Migratory : Programs access a particular data item in turn.
◆  Write-shared : Programs access the same data item, but write to

different parts of the data item.
◆  Producer-consumer : One program write to the data item. A

fixed set of programs read it.
◆  Reduction : The data is always locked, read, updated, and

unlocked
◆  Result : Several programs write to different parts of one data

item. One program reads it.
◆  Conventional : Data is managed using write-invalidate.

109

Other consistency models

◆  Casual consistency – The happened-before relationship can be applied to
read and write operations.

◆  Pipelining RAM – Programs apply write operations through pipelining.
◆  Processor consistency - Pipelining RAM plus memory coherent.

110

Other consistency models

◆  Entry consistency – Every shared data item is paired
with a synchronization object.

◆  Scope consistency – Locks are applied automatically
to data objects instead of relying on programmers to
apply locks.

◆  Weak consistency – Guarantees that previous read and
write operations complete before acquire or release
operations.

111

◆  George Coularis, Jean Dollimore and Tim Kindberg,
Distributed Systems, Concepts and Design, Addison
Wesley, Fourth Edition, 2005

◆  Figures from the Coulouris text are from the
instructor’s guide and are copyrighted by Pearson
Education 2005

Bibliography

