
Load Balancing/Sharing/Scheduling

ECE 677

University of Arizona

2 ECE 677, LB S. Hariri

Why Load Distribution?

Communication

Network

Moderately loaded Heavily loaded

3 ECE 677, LB S. Hariri

Motivation

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

N=5

N=10

N=20

P

Server Utilization

Let P is the probability that one task is waiting for service, while there is at least

one computer is idle

4 ECE 677, LB S. Hariri

Issues in Load Distributing/Scheduling:
Load Definition

 it has been shown that a resource queue
length is a good indicator.

 For example, measuring the CPU queue length
correlates to task response time and can be obtained
with little overhead

 In interactive environment, it is suggested
that queue length has little correlation with
processor utilization.

5 ECE 677, LB S. Hariri

Issues in Load Distributing/Scheduling:
AlgorithmType

The basic function involves transferring load
(tasks) from heavily loaded computers to idle
or lightly loaded computers

Algorithms can be classified as: Static,
dynamic or adaptive

6 ECE 677, LB S. Hariri

Issues in Load Distributing: Load
Balancing vs. Load Sharing

both algorithms try to reduce the
likelihood of having one or more computers
idle while tasks contend for service at
another computer

load balancing goes a step further to
equalize loads at all computers; this
results in higher transfer rates and thus
more overhead than load sharing
algorithms

7 ECE 677, LB S. Hariri

Issues in Load Distributing: Preemptive
vs. Nonpreemptive Transfers

Preemptive involves transferring a task that is partially
executed
It is an expensive operation

Task state consists of a virtual memory images, a process control block,
unread I/O buffers and messages, file pointers, timers that have
been set, etc.

Nonpreemptive transfers involve transferring of tasks
that have not begun execution and thus do not require
the transfer of the task state

The execution environment of the transferred tasks
need to be transferred to the receiving node
this includes user’s current working directory, the privileges

inherited by the task, etc.

8 ECE 677, LB S. Hariri

Load Balancing in General

Enormous and diverse literature on load balancing

Computer Science systems

Computer Science theory

Operations research (OR)

Application domains

A closely related problem is scheduling,
which is to determine the order in which
tasks run

9 ECE 677, LB S. Hariri

Understanding Load Balancing Problems

Load balancing problems differ in:

Tasks costs
Do all tasks have equal costs?

If not, when are the costs known?
Before starting, when task created, or only when task ends

Task dependencies
Can all tasks be run in any order (including parallel)?

If not, when are the dependencies known?
Before starting, when task created, or only when task ends

Locality
Is it important for some tasks to be scheduled on the same

processor (or nearby) to reduce communication cost?

When is the information about communication between tasks known?

10 ECE 677, LB S. Hariri

Task cost spectrum

11 ECE 677, LB S. Hariri

Task Dependency Spectrum

12 ECE 677, LB S. Hariri

Task Locality Spectrum (Data Dependencies)

13 ECE 677, LB S. Hariri

Spectrum of Solutions

One of the key questions is when certain information
about the load balancing problem is known

Leads to a spectrum of solutions:

All information is available to scheduling algorithm,
which runs before any real computation starts.
(Static/offline algorithms)

Semi-static scheduling. Information may be known at
program startup, or the beginning of each timestep,
or at other well-defined points. Offline algorithms
may be used even though the problem is dynamic.

Dynamic scheduling. Information is not known until mid-
execution. (online algorithms)

14 ECE 677, LB S. Hariri

Load Balancing Algorithms

Early works focused on static placement techniques

 - seeks optimal or near optimal solution to processor allocation

Recent works evolved to adaptive load balancing with process
migration

A simple approach is to have a central allocation processor that
receives periodically

 - load information form all processors

 - makes process placement decisions

 - it has a single point of failure and can be a bottleneck

Distributed process allocation is another complex alternative

15 ECE 677, LB S. Hariri

Static Load Balancing
Find an allocation of processes to processors to

 - minimize execution cost

 - minimize communication cost

Assumptions:

 - program consists of a number of modules

 - cost of executing a module on a processor

 - volume of data flow between modules

Problem formulation:

 - assign modules to processors in an optimal manner within their
given cost constraints

 - does not consider the current state of the system when making
the placement decisions

16 ECE 677, LB S. Hariri

Evaluation of load balancing

Efficiency
Are the processors always working?

How much processing overhead is associated with the load
balance algorithm?

Communication
Does load balance introduce or affect the communication

pattern?

How much communication overhead is associated with the load
balance algorithm?

How many edges are cut in communication graph?

17 ECE 677, LB S. Hariri

Partitioning Techniques

Regular grids (-: Easy :-)
striping

blocking

use processing power to divide load more fairly

Generalized Graphs
Levelization

Scattered Decomposition

Recursive Bisection

18 ECE 677, LB S. Hariri

Levelization

Begin with a boundary
Number these nodes 1

All nodes connected to a level 1 node are
labeled 2, etc.

Partitioning is performed
determine the number of nodes per processor

count off the nodes of a level until exhausted

proceed to the next level

19 ECE 677, LB S. Hariri

Levelization

20 ECE 677, LB S. Hariri

Scattered Decomposition

Used for highly irregular grids

Partition load into a large number r of
rectangular clusters such that r >> p

Each processor is given a disjoint set of
r/p clusters.

Communication overhead can be a problem
for highly irregular problems.

21 ECE 677, LB S. Hariri

Greedy Bisection

Start with a vertex of the
smallest degree

least number of edges

Mark all its neighbors

Mark all its neighbors
neighbors, etc.

The first n/p marked
vertices form one
subdomain

Apply the algorithm on the
remaining

22 ECE 677, LB S. Hariri

The O-1 Integer Programming Approach

C ij : coupling factor = the number of
data units transferred form module i to
module j.

d kl : interprocessor distance = the
cost of transferring one data unit from
processor k to processor l.

qik : execution cost = the cost of
running module i on processor k.

23 ECE 677, LB S. Hariri

The O-1 Integer Programming Approach

If i and j are resident on processors k and l
respectively, then their total communications

cost can be expressed as Cij * dkl.
In addition to these quantities the assignment
variable is defined as:

Xik = 1, if module i is assigned to processor k.

 0, otherwise

Using the above notation, the total cost of
processing a number of user modules is given as:

Si Sk (qik Xik + Sl Sj (cij * dkl) Xik Xjl)

24 ECE 677, LB S. Hariri

The O-1 Integer Programming Approach

In this scheme, constraints can be added easily to the
problem (Memory constraints)

Si Mi Xik <= S k

 Mi = memory requirements of module i

 Sk = memory capacity of processor k

Non-linear programming techniques or branch and bound
techniques can be used to solve this problem

The complexity of such algorithms is NP-complete

Main disadvantage is the need to specify the values of
large number of parameters

25 ECE 677, LB S. Hariri

Semi-Static Load Balance
If domain changes slowly over time and locality is important

use static algorithm

do some computation (usually one or more timesteps) allowing some
load imbalance on later steps

recompute a new load balance using static algorithm

Often used in:

particle simulations, particle-in-cell (PIC) methods

poor locality may be more of a problem than load imbalance as particles
move from one grid partition to another

tree-structured computations

grid computations with dynamically changing grid, where changes are
slowly

26 ECE 677, LB S. Hariri

Self-Scheduling

Self scheduling:

Keep a centralized pool of tasks that are available to run

When a processor completes its current task, it picks up a task
from the pool

If the computation of one task generates more tasks, add them to
the pool

Originally used for:

Scheduling loops by compiler (really the runtime-system)

Original paper by Tang and Yew, ICPP 1986

27 ECE 677, LB S. Hariri

When is Self-Scheduling a Good Idea?

Useful when:

A batch (or set) of tasks without dependencies

can also be used with dependencies, but most analysis
has only been done for task sets without
dependencies

The cost of each task is unknown

Locality is not important

Using a shared memory multiprocessor, so a
centralized pool of tasks is fine

28 ECE 677, LB S. Hariri

Variations on Self-Scheduling

Typically, don’t want to grab smallest unit of parallel work.

Instead, choose a chunk of tasks of size K.

If K is large, access overhead for task queue is small

If K is small, we are likely to have even finish times (load balance)

Four variations:

Use a fixed chunk size

Guided self-scheduling

Tapering

Weighted Factoring

29 ECE 677, LB S. Hariri

Fixed Chunk Size

Apply a technique for computing the optimal chunk size

Requires a lot of information about the problem
characteristics

e.g., task costs, number

Results in an off-line algorithm. Not very useful in
practice.

For use in a compiler, for example, the compiler would have to
estimate the cost of each task

All tasks must be known in advance

30 ECE 677, LB S. Hariri

Guided Self-Scheduling
Idea: use larger chunks at the beginning to avoid excessive
overhead and smaller chunks near the end to even out the finish
times.

The chunk size Ki at the ith access to the task pool is given by

 ceiling(Ri/p)

where Ri is the total number of tasks remaining and

p is the number of processors

See Polychronopolous, “Guided Self-Scheduling: A Practical
Scheduling Scheme for Parallel Supercomputers,” IEEE
Transactions on Computers, Dec. 1987.

31 ECE 677, LB S. Hariri

Tapering

Idea: the chunk size, Ki is a function of not
only the remaining work, but also the task
cost variance

variance is estimated using history
information

high variance => small chunk size should be
used

low variant => larger chunks OK

32 ECE 677, LB S. Hariri

Distributed Task Queues

The obvious extension of self-scheduling to distributed memory is:

a distributed task queue (or bag)

When are these a good idea?

Distributed memory multiprocessors

Or, shared memory with significant synchronization overhead

Locality is not (very) important

Tasks that are:

known in advance, e.g., a bag of independent ones

dependencies exist, i.e., being computed on the fly

The costs of tasks is not known in advance

33 ECE 677, LB S. Hariri

Engineering Distributed Task Queues

A lot of papers on engineering these systems on various machines, and
their applications

If nothing is known about task costs when created

organize local tasks as a stack (push/pop from top)

steal from the stack bottom (as if it were a queue), because old tasks likely
to cost more

If something is known about tasks costs and communication costs, can be
used as hints. (See Wen, UCB PhD, 1996.)

Part of Multipol (www.cs.berkeley.edu/projects/multipol)

Try to push tasks with high ratio of cost to compute/cost to push

Ex: for matmul, ratio = 2n3 cost(flop) / 2n2 cost(send a word)

Goldstein, Rogers, Grunwald, and others (independent work) have all
shown

advantages of integrating into the language framework

very lightweight thread creation

CILK (Leicerson et al) (supertech.lcs.mit.edu/cilk)

34 ECE 677, LB S. Hariri

DAG Scheduling
For some problems, you have a directed acyclic graph (DAG) of
tasks

nodes represent computation (may be weighted)

edges represent orderings and usually communication (may also be
weighted)

not that common to have the DAG in advance

Two application domains where DAGs are known

Digital Signal Processing computations

Sparse direct solvers (mainly Cholesky, since it doesn’t require
pivoting).

The basic offline strategy: partition DAG to minimize
communication and keep all processors busy

NP complete, so need approximations

Different than graph partitioning, which was for tasks with
communication but no dependencies

See Gerasoulis and Yang, IEEE Transaction on P&DS, Jun ‘93.

35 ECE 677, LB S. Hariri

Mixed Parallelism

As another variation, consider a problem with 2 levels
of parallelism

course-grained task parallelism

good when many tasks, bad if few

fine-grained data parallelism

good when much parallelism within a task, bad if little

Appears in:

Adaptive mesh refinement

Discrete event simulation, e.g., circuit simulation

Database query processing

Sparse matrix direct solvers

36 ECE 677, LB S. Hariri

Mixed Parallelism Strategies

37 ECE 677, LB S. Hariri

Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing

IEEE Transactions on Parallel and Distributed Systems,
Vol. 13, No. 3, March 2002, Topcuoglu, Hariri, Wu

- Scheduling Algorithms

- Listing – order tasks based on priority, and then processor
allocation to minimize objective function

- Clustering – map a given graph to an unlimited number of clusters

- duplication

-Guided random search based on Genetic algorithms – long
execution time

38

Classification of Static Scheduling Algorithms

ECE 677, LB S. Hariri

39

- Task scheduling for heterogeneous processors is less
studied due to the increase in complexity

- Heterogeneous Earliest-Finish Time (HEFT) Algorithm

- Critical Path on a Processor (CPOP) Algorithm

ECE 677, LB S. Hariri

40 ECE 677, LB S. Hariri

Task-Scheduling Problem
Assume that we know the execution time for each task, ni on
each processor pj (computation cost matrix)

- Communication cost between tasks

- Define Earliest Start Time (EST) and Earliest Finish Time
(EFT) for each task. We compute that for each task in the
graph starting from the entry task.

- Actual Start Time AST (nm) and Actual Finish Time AFT (nm)
determine the actual time to start a task and its finishing time
on an assigned processor

- Makespan is the actual finish time after all graph tasks are
scheduled and complete their execution

- Objective Function

-Find the schedule of tasks that minimizes the makespace (schedule length is
minimized)

41 ECE 677, LB S. Hariri

Task-Scheduling for Heterogenesous Enviornment

Dynamic Level Scheduling (DLS) Algorithm

 each step, the algorithm selects (ready node, available processor)
that maximizes the dynamic level: smallest time to start from a given
task

 Mapping Heuristic (MH), estimate the cost of running each task on
each processor, schedule tasks that minimizes the ready time (when
the processor is ready to execute the next task)

 Levelized-Min Time (LMT) algorithm

 It is a two phase Algorithm

 Phase I: group all tasks that can execute in parallel using the level
attribute

 Phase 2: assign each task to fastest available processor

 Each task is assigned to a processor that minimizes the sum of the task’s
computation cost and the total communication costs with the tasks in the
previous levels

42 ECE 677, LB S. Hariri

HEFT and CPOP Algorithms

They are based on upward and downward ranking

Upward rank represents the length of the critical path from
task ni to the exist task, including the communication cost of
task ni, computing from the exit node

-Downward ranking represents the length of the critical path
from ni to the entry task of the

- Heterogeneous-Earliest Finish Time (HEFT) Algorithm

- Task Prioritizing Phase- for computing the priorities of all
tasks

- Processor Selection Phase: for selecting the tasks in the
order of their priorities and scheduling each task on its best
processor, which minimizes the task’s finish time

- Rank tasks based on upward rank value

43

HEFT Algorithm

 Set the computation costs of tasks and
communication costs of edges

 Compute rank for all tasks by traversing graph
upward, starting from the exit task

 Sort all tasks in a scheduling list by decreating order
of rank

While loop

- select first task, ni from the lsit

For each processor compute EFT (ni, pk)

Assign task ni to the processor pj that minimizes EFT of
task Ni

ECE 677, LB S. Hariri

44

HEFT Algorithm

ECE 677, LB S. Hariri

45

Critical Path on a Processor (CPOP)

ECE 677, LB S. Hariri

46 ECE 677, LB S. Hariri

Scheduling Metrics

1. Schedule Length Ratio (SLR). The ratio of the
schedule length time over the shortest possible
execution of the graph

2. Speedup: The sequential execution time of the
graph over the parallel execution

3. Number of Occurrences of Better Quality of
Schedules

1. Number of time each algorithm produced better results

4. Running Time of the Algorithm

1. How long it takes the algorithm to produce its results

5. Build a random graph generator to compare
different algorithms (around 56K different graphs
are used in the comparison)

47 ECE 677, LB S. Hariri

48 ECE 677, LB S. Hariri

49 ECE 677, LB S. Hariri

Dynamic Load Balancing

Consider adaptive algorithms

After an interval of computation

mesh is adjusted according to an estimate of the
discretization error

coarsened in areas

refined in others

Mesh adjustment causes load imbalance

50 ECE 677, LB S. Hariri

Repartitioning

Consider: dynamic situation is simply a
sequence of static situations

Solution: repartition the load after each
some partitioning algorithms are very quick

Issues
scalability problems

how different are current load distribution and new load distribution

data dependencies

51 ECE 677, LB S. Hariri

Dynamic Load Balancing

Load is statically partitioned initially

Adjust load when an imbalance is detected.

Objectives

rebalance the load

keep edge cut minimized (communication)

avoid having too much overhead

52 ECE 677, LB S. Hariri

Centralized DLB

Control of the load is centralized

Two approaches
Master-worker (Task scheduling)

Tasks are kept in central location

Workers ask for tasks

Requires that you have lots of tasks with weak locality requirements.
No major communication between workers

Load Monitor

Periodically, monitor load on the processors

Adjust load to keep optimal balance

53 ECE 677, LB S. Hariri

Decentralizing DLB

Generally focused on work pool

Two approaches

Hierarchy

Fully distributed

54 ECE 677, LB S. Hariri

Adaptive Load Balancing

Need to avoid high communication
overhead during load information exchange

Need to guard against instability

migrate many processes to lightly loaded
processor that soon becomes heavily
loaded

 => processor thrashing

 How do you evaluate the Performance of
LB Algorithms

 effectiveness: measure improvement in performance
with and without LB

55 ECE 677, LB S. Hariri

Adaptive Load Balancing (cont)

DLB Algorithm components:
 Activation Policy – When we start the LB Algorithm

 most of the techniques proposed are threshold policies.

 When the load on one computer exceeds certain threshold, it becomes
heavily loaded (sender)

 Selection Policy: Which Process/Task to migrate?

 Location Policy: Who can share load?

 Polling is a common technique to find out whether a node is suitable for
load sharing.

 Information Policy: What type of information?

 it determines what information about the states of other nodes need
to be collected, where it should be collected from, and when/how
offten it should be collected.

56 ECE 677, LB S. Hariri

Information Policy

Most of information policies are based on
the following three types:
 Demand-driven. A node collects information about
other nodes only when it becomes either a sender (busy)
or a receiver node (idle)

 Periodic. Nodes exchange load every period T

 State-driven: whenever nodes state changes
by a certain degree

57 ECE 677, LB S. Hariri

Information Policy: Processor Load

We need to obtain from the OS the current
load on each processor

The measure will be calculated frequently and
thus should be done efficiently

It should adopt swiftly to changes in load state

One could use a load estimation program that
constantly runs to determine the intervals
between successive runs.

 Long T -> processor load is high

58 ECE 677, LB S. Hariri

Information Policy: Processor Load

Use the Unix five-minute average which gives the length
of the run queue

Use number of processes ready to run on the CPU at a
given instant of time

We do need to maintain stability:

 - cost of load balancing do not outweigh its benefits
over a system using no load balancing

 => Load value should be averaged over a period at
least as long as the time to migrate on average process

 virtual load = actual load + migrated processes load

59 ECE 677, LB S. Hariri

Bryant and Finkel (1981) used the remaining service time RE (tK)
to estimate the response time of a process arriving at one
processor J(P) which has J jobs in its queue

R = RE (tK); remaining time equal to current service time

for all J belong to J(P) Do

 begin

 if RE (tJ) < RE (tK)

 then R = R + RE (tJ)

 else R = R + RE (tK)

 end

RSPE (K, J(P)) = R

Where J(P): set of jobs resident on processor P.

Processor Load Measurement (cont)

60 ECE 677, LB S. Hariri

Processor Load Measurement (cont)

Ferrari (1985) proposed a linear
combination of all main resource
queues as a measure of load

This technique determines the
response time of a Unix command in
terms of resource Queue lengths

The analysis assumes steady-state
system and certain queueing
disciplines for resources

61 ECE 677, LB S. Hariri

Information Policy: Frequency of
Information Exchange

The state information will vary in its
degree of accuracy since computers
are loosely coupled

We need sufficient accuracy

to avoid instability, we need to
increase frequent load exchange

=> This degrades performance

62 ECE 677, LB S. Hariri

Information Policy: Demand Driven:

In Maitre d' systems (Bershad 1985), one
daemon process examines the Unix five-minute
load average. If the processor can handle more
processes, it will broadcast this availability

Other alternative is to broadcast a message
when the processor becomes idle ==>
announcing willingness to accept migrating
processes

This approach works efficiently if the network
uses a broadcast communications medium

63 ECE 677, LB S. Hariri

Global System Load Approach
Processors calculate the load on the whole
system and adjust their own load relative to
this global value

When the processor load differs significantly
from the average load, load balancing is
activated

 The difference should not be too
small and also not too large

Information Policy: Demand Driven

64 ECE 677, LB S. Hariri

Information Policy: Demand Driven

Gradient model algorithm:
view global load in terms of a collection of distances

from a lightly loaded processor
the proximity (Wi of a processor is calculated as its minimum

distance form a lightly loaded processor

 gk is set to zero if the processor is lightly loaded
Wi =minK {diK, over K where gk =0 } if $ K|gK = 0

 Wi = Wmax , if forall K, gk = Wmax ,

 Wmax = D(N) + 1

 D(N) = max{diJ , forall i, J belong to N}; Diameter Distance

65 ECE 677, LB S. Hariri

Information Policy - Demand Driven

global load is then represented
by a gradient surface

 GS = (W1 , W2 , ... Wn)

 it gives a route to a lightly
loaded processor with minimum
cost

66 ECE 677, LB S. Hariri

Information Policy: Periodic Exchange

each processor cyclically sends load
information to each of its neighbors; to pair
with a processor that differs greatly from
its own

load information consists of a list of all local
jobs, together with jobs that can be
migrated to the sender of load message

67 ECE 677, LB S. Hariri

Information Policy: State-change Driven

Load vector of a processor neighbors is
maintained and updated when a state
transition occurs: L_N, N_L, N_H, H_N

to reduce number of messages sent

 N - L_load message is sent when N_L
transition if previous state was heavy

 - broadcast N_H transitions and only
notify neighbors of H_N transition when
process migration is negotiated

68 ECE 677, LB S. Hariri

Activation Policy

Static threshold values:
when load goes beyond this threshold, processes
should be off loaded

 this value is chosen experimentally

Under loaded processor could seek to
accept processes form other peer
processors

69 ECE 677, LB S. Hariri

Activation Policy (cont)

Difference of a processor's load from that of
its peers can be used to change node status
(sender or receiver)

 - When difference exceeds some bias, then
migration is a viable proposition

 - Examine periodically the response time of
processes if moved to a remote processor

 - If the response time is significantly
better, the processes are migrated

70 ECE 677, LB S. Hariri

Selection Policy

It selects a task for transfer once a
node is identified as a sender

Which processes to be migrated?
consider only newly-arriving processes

we need to limit the number of times a process is
permitted to migrate

move the one that will benefit most from remote
execution.

71 ECE 677, LB S. Hariri

Selection Policy - Cont.
Kreuger and Finkel (1984) proposed the following:

1. Migration of a blocked process may not prove useful, since this may not
effect local processor load

2. 2. Extra overhead will be incurred by migrating the currently
scheduled and running process

3. The process with longer response time can better afford the
cost of migration

4. Smaller processes put less load on the communications network

5. The process with the highest remaining service time will
benefit most in the long-term from migration

6. Processes which communicate frequently with the intended
destination processor will reduce communications load if they
migrate

7. Migrating the most locally demanding process will be of
greatest benefit to local load reduction

72 ECE 677, LB S. Hariri

Define a method by which processors cooperate
to find a suitable location for a migrating
process

Methods can be categorized into two groups:
sender-initiated and receiver initiated
methodsder-initiated approaches:
 initiating load-balancing from an overloaded processor is widely studied

Eager (1986) studied 3 simple algorithms

 - activation policy is a simple static threshold

 (a) choose a destination processor at random for a process
migrating from a heavily-loaded processor.

 Number of transfers is limited to only one

Location Policy

73 ECE 677, LB S. Hariri

Location Policy

(b) choose a processor at random and then probe
its load.

If it exceeds a static threshold,

another processor is probed and so on until one
is found in less than a given number.

Otherwise, the process is executed locally

 (c) poll a fixed number of processors, requesting
their current queue lengths and selecting the
one with the shortest queue

74 ECE 677, LB S. Hariri

Stankovic (1984) proposed three algorithms which are
based on relative difference between processor loads

- information exchange is through periodically
broadcasting local values

 (a) choose least-loaded processor if load
difference is larger than a given bias

 (b) if difference > bias 1, migrate one process

 (c) if difference > bias 2, migrate two processes

 (d) similar to (a), except no further migration to
that processor for a given period 2t

Location Policy (cont)

75 ECE 677, LB S. Hariri

When a processor becomes overloaded, it
broadcasts the fact

under-loaded processor responds and indicates
number of processes that can be accepted and
adjusts its load

if no response, it assumes that the average value
is too low and increases this global value and
then broadcasts it

it adopts fast to fluctuations in system load

Location Policy (cont)

76 ECE 677, LB S. Hariri

Receiver-Initiated Approaches

(a) when the load on one processor falls

 below the static threshold (T),

 it polls random processors to find one

 where if its process is migrated

 would not cause its load to be below
T.

77 ECE 677, LB S. Hariri

 (b) to avoid migrating an executing
process,

a reservation is made to migrate the

 next newly-arriving process

simulation results showed that it does not
perform as well as (a) approach

Receiver-Initiated Approaches - cont.

78 ECE 677, LB S. Hariri

For broadcast networks, Livny and
Melman (1982) proposed two
receiver-initiated policies:

 (a) A node broadcasts a status
message when it becomes idle

Location Policy (cont)

79 ECE 677, LB S. Hariri

Location Policy (cont)

A node broadcasts a message when it becomes idle

Receivers carry out the following actions:

i. If ni > 1 continue to step ii, else terminate algorithm.

ii. Wait D/n time units, where D is a parameter depending on
the speed of the communications; by making this value dependent on
processor load, more heavily-loaded processors will respond more quickly.

iii. Broadcasting a reservation message if no other
processor has already done so (if this is the case
terminate algorithm).

iv. Wait for reply

v. If reply is positive, and ni > 1, migrate a process to the
idle processor.

80 ECE 677, LB S. Hariri

Location Policy (cont)

 (a) method might overload the communication medium, so a second
method is to replace broadcasting by polling when idle. The
following steps are taken when a processor's queue length reaches
zero.

 i. Select a random set of R processors (ai, ... aN) and set a
counter j=1.

 ii. Send a message to processor aj and wait for a reply.

 iii. The reply from aj will either be a migrating process or an
indication that it has no processes.

 iv. If the processor is still idle and j<R, increment j and go to
step ii else stop polling.

81 ECE 677, LB S. Hariri

Load Balancing Algorithms

Sender-Initiated Algorithms

Receiver-Initiated Algorithms

Symmetrically Initiated Algorithms

Adaptive Algorithms
A Stable Symmetrically Initiated Algorithm

A Stable Sender-Initiated Algorithm

82 ECE 677, LB S. Hariri

Sender-Initiated Algorithms

We study three simple algorithms presented by
Eager et al

Transfer policy: All three algorithms use a
threshold policy based on CPU queue length

a node is identified as a sender if the originating task at that node
makes the queue length > T

a node is identified as a receiver for a remote task if its queue length is
still < T when it accepts that task

Selection Policy: consider only newly arrived
tasks for transfer

Location Policy: Random, Threshold, Shortest

83 ECE 677, LB S. Hariri

Sender-Initiated Algorithms- Cont.

Location Policy: Random Policy
a task is simply transferred to a node
selected at random

useless task transfers can occur

it is instable algorithm

it provides performance improvement over
no load sharing if the load is moderately low
to average

84 ECE 677, LB S. Hariri

Sender-Initiated Algorithms- Cont

Location Policy: Threshold
useless task transfers can be avoided by
polling a node (selected at random) to
determine if it is a receiver

if so, the task is transferred to the
selected node

85 ECE 677, LB S. Hariri

Sender-Initiated Load Sharing with
Threshold Location Policy

Select node

‘i’ randomly

Poll-set = Nil

Queuelength + 1

 > T

‘i’ in Poll-set Poll-set = Poll-set U ‘i’ Poll node

‘i’

Transfer task

to ‘i’

No. of Polls <

 PollLimit

queue Length at i

<

T

Queue the

task locally

Yes

No

Yes
No

Yes

Yes

No

No

Task Arrive

86 ECE 677, LB S. Hariri

Sender-Initiated Algorithms - Cont.

Location Policy: Shortest
a number of nodes are selected at random and are polled to
determine their queue length

the node with the shortest queue length is selected as the
destination for task transfer unless its

queue length >= T

the performance improvement of shortest location policy over
threshold location policy was shown to be marginal

Information Policy: It is based on demand-
driven policy

87 ECE 677, LB S. Hariri

Receiver-Initiated Algorithms

the load distributing activity is initiated from an
under-loaded node (receiver) trying to obtain a
task from a sender node

Activation (Transfer) Policy: It is based on a
threshold policy using CPU queue length. The
transfer policy is triggered when a task
departs. If the local queue length falls below
T, the node is identified as a receiver

Selection Policy:
select the newly arrived tasks

the overhead incurred by transferring the task is less than the
expected performance

a task is selected if response time will be improved upon transfer

88 ECE 677, LB S. Hariri

Receiver-Initiated Algorithms

Location Policy: a node selected at
random is polled to determine if
transferring a task from it would not
place its queue length below T

Information Policy: it is based on
demand-driven because the polling
activity starts only after a node
becomes a receiver

89 ECE 677, LB S. Hariri

Receiver-Initiated Load Sharing

Select node

‘i’ random;y

Poll-set = Nil

Queuelength

 < T

‘i’ in Poll-set Poll-set = Poll-set U ‘i’
Poll node

‘i’

Transfer task

from ‘i’ to j

No. of Poll

 < PollLimit

queue length

>

T

Wait for a

predetermined

period

Yes

No

Yes

Yes

No

No

Task departure at ‘j’

90 ECE 677, LB S. Hariri

Receiver-Initiated Algorithm

Stability: do not cause system
instability

at high loads, there is a high
probability to find a sender

at low loads, there are few senders,
but more receiver-initiated polls

91 ECE 677, LB S. Hariri

Receiver-Initiated Algorithm

Drawbacks:
under most of CPU scheduling techniques, newly
arrived tasks are provided quickly quantoms of
service

consequently, most of task transfers are preemptive
and thus are expensive

sender-initiated algorithms can make a greater use
of non-preemptive transfers

92 ECE 677, LB S. Hariri

Symterically Initiated Algorithms

both senders and receivers search for
receivers and senders, respectively

at low system loads, sender-initiated
component is more successful in finding
underloaded nodes

at high system loads, receiver-initiated
component is more successful in finding
overloaded nodes

this scheme has the disadvantages of both
schemes.

93 ECE 677, LB S. Hariri

The Above-Average Algorithm

proposed by Krueger and Finkel, it tries to
maintain the load at each node within an
acceptable range of the system average

transfer policy: it is a threshold policy that
uses two adaptive thresholds:
upper and lower thresholds that are equidistant from the node’s

estimate of the average load across all nodes

nodes above the upper threshold are considered senders

while those less than the lower thresholds are considered receivers

nodes between these two thresholds are considered to be acceptable

location policy: it has two components: sender-
initiated component

94 ECE 677, LB S. Hariri

The Above-Average Algorithm-Cont.

Sender-Initiated Component
a sender broadcasts a TooHigh messsage, set TooHigh timeout

alarm, and listens for an Accept message

a receiver that receivers a TooHigh message cancels its
TooLow timeout, sends an Accept message, increases its load
value, and sets an AwaitingTask timeout

on receiving an Accept message, the sender node chooses the
best task to transfer

on expiration of TooHigh timeout, if no Accept message has
been received, the sender broadcasts a ChangeAverage
message to increase the average load estimate at the other
nodes

95 ECE 677, LB S. Hariri

The Above-Average Algorithm-Cont

Receiver-Initiated Component
when a node becomes a receiver, it broadcasts a TooLow

message, sets a TooLow timeout alarm, and starts listenning
for a TooHigh message

if a TooHigh message is received, the receiver sends an Accept
message, increases its load, and sets a timeout alarme

if the TooLow timeout expires before receiving any TooHigh
messages, the receiver broadcasts a ChangeAverage
message to decrease the average load estimate at the other
nodes

96 ECE 677, LB S. Hariri

The Above-Average Algorithm-Cont

Selection Policy: Can use any of the
techniques discussed before.

Information Policy: it is based on
demand-driven policy.
the system load average is determined individually at each

node without exchanging many messages.

the acceptable range determines the responsiveness of the
algorithm

when the communication network is heavily (lightly) loaded, the
acceptable range can be inccreased (decreased) by each
node individually

97 ECE 677, LB S. Hariri

Adaptive Algorithms- A Stable
Symetrically Initiated Algorithm

 the main instability in the previous algorithms is
caused by the indiscriminate polling by the sender’s
initiated component

 this scheme utilizes the information gathered during
polling to classify nodes as senders, receivers, or OKs

 each node maintains a data structure that includes
Sender List, Receiver List and OK List

 initially, each node assumes that every other node is a
receiver

 Transfer Policy: it has two components:sender-
initiated and receiver-initiated components

98 ECE 677, LB S. Hariri

A Stable Symetrically Initiated
Algorithm-Cont.

Sender-Initiated Component:

the sender node polls the node at the head of the
Receivers List

the polled node puts the sender node at the head of
its Senders List, and informs the sender about its
status

At the sender, if it is not a receiver, it is moved from
the Receivers List and put in the proper list

the polling process stops if a suitable receiver is
found

99 ECE 677, LB S. Hariri

A Stable Symetrically Initiated
Algorithm-Cont

Receiver-Initiated Component

The nodes are polled in the following way:

head to tail in the Senders List; use up-to-date
information first

tail to head in the OK List; use out-to-date
information first

tail to head in the Receivers List; use out-to-
date information first

it stops when it found a sender node

100 ECE 677, LB S. Hariri

A Stable Symetrically Initiated
Algorithm-Cont

Selection Policy: sender initiated
component considers only newly arrived
tasks, while receiver-initiated
component can use a variety of
techniques

Information Policy: it is a demand-
driven policy since the polling activity
starts when a node becomes a sender
or a receiver

101 ECE 677, LB S. Hariri

A Stable Symetrically Initiated
Algorithm-Cont

Discussion:

at high system loads, many unsuccessful polls for nodes result in their
removal from the Receivers list

thus future sender-initiated polls will terminate
at high system loads

at low system loads, receiver-initiated polling generally fail,
do not affect system performance since there is plenty CPU
capacity available in the system

with update information, the Receivers List is
accurately reflecting the system state, and
sender-initiated activity will succeed with a few
polls

102 ECE 677, LB S. Hariri

A Stable Sender-Initiated Algorithm

this algorithm does not cause
instability

load sharing is only due to
nonpreemptive task transfers

it has the same sender-initiated
component but modified receiver-
initiated component

103 ECE 677, LB S. Hariri

A Stable Sender-Initiated Algorithm

Receiver-Initiated Component
maintain a state vector about system state which it
lets each node to keep track of which list (sender,
receiver, OK) it belongs to at each node in the
system

when a node becomes a receiver, it informs all nodes
that are misinformed about its current state

no preemptive transfers because
the sender-initiated component
performs the load sharing

104 ECE 677, LB S. Hariri

Performance Comparison

Assumptions:

the average service demand for tasks
is one time unit

task interarrival times and service
demands are independently
exponentially distributed

the system load is homogeneous and
has 40 identical nodes

105 ECE 677, LB S. Hariri

Performance Comparison

Algorithms Studied are:
M/M/1 A distributed system that performs no load

 distributing

RECV Receiver-initiated algorithm

RAND Sender-initiated algorithm with random
 location policy

SEND Sender-initiated algorithm with threshold
 policy

ADSEND Stable sender-initiated algorithm

SYM Symetrically initiated algorithm

ADSYM Stable symemetrically initiated algorithm

M/M/K A distributed system that performs ideal load
 distributing

106 ECE 677, LB S. Hariri

Receiver-initiated vs. Sender-initiated Load Balancing

0

1

2

3

4

5

6

0.5 0.6 0.7 0.8 0.9 1

MM/1

RANDOM

SEND

RECV

M/M/K

M
ea

n
 R

es
p
o

n
se

 T
im

e

Offered System Load

107 ECE 677, LB S. Hariri

Symmetrically Initiated Load Sharing

1

2

3

4

5

6

7

8

0.5 0.6 0.7 0.8 0.9 1

SEND

SYM

RECV

M
ea

n
 R

es
p
o

n
se

 T
im

e

Offered System Load

108 ECE 677, LB S. Hariri

Stable Load Sharing Algorithms

0

1

2

3

4

5

6

7

8

0.5 0.6 0.7 0.8 0.9 1

SEND

SYM

ADSEND

ADSYM

M/M/K

M
ea

n
 R

es
p
o

n
se

 T
im

e

Offered System Load

109 ECE 677, LB S. Hariri

Selecting A Suitable Load Sharing
Algorithm

If the system never attains high loads,
sender-initiated algorithms give
acceptable performance improvement

If the system can reach high loads, use
stable scheduling algorithms

If the system experience a wide range
of load fluctuations, the stable
symmetrically initiated scheduling
algorithm is recommended

110 ECE 677, LB S. Hariri

Selecting A Suitable Load Sharing
Algorithm

For systems with wide range of
load fluctuations and has a high
cost for migration partially
executed tasks, stable sender-
initiated algorithms are
recommended

For systems that experience
heterogeneous work arrival,
adaptive stable algorithms are
recommended

