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Why Load Distribution? 

Communication 

Network 

Moderately loaded Heavily loaded 
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Motivation 
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Issues in Load Distributing/Scheduling: 
Load Definition 

 it has been shown that a resource queue 
length is a good indicator.  

 For example, measuring the CPU queue length 
correlates to task response time and can be obtained 
with little overhead 

 In interactive environment, it is suggested 
that queue length has little correlation with 
processor utilization.  
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Issues in Load Distributing/Scheduling: 
AlgorithmType 

The basic function involves transferring load 
(tasks) from heavily loaded computers to idle 
or lightly loaded computers 

Algorithms can be classified as: Static, 
dynamic or adaptive 
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Issues in Load Distributing: Load 
Balancing vs. Load Sharing 

both algorithms try to reduce the 
likelihood of having one or more computers 
idle while tasks contend for service at  
another computer 

load balancing goes a step further to 
equalize loads at all computers; this 
results in higher transfer rates and thus 
more overhead than load sharing 
algorithms 
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Issues in Load Distributing: Preemptive 
vs. Nonpreemptive Transfers 

Preemptive involves transferring a task that is partially 
executed 
It is an expensive operation 

Task state consists of a virtual memory images, a process control block, 
unread I/O buffers and messages, file pointers, timers that have 
been set, etc. 

Nonpreemptive transfers involve transferring of tasks 
that have not begun execution and thus do not require 
the transfer of the task state 

The execution environment of the transferred tasks 
need to be transferred to the receiving node  
this includes user’s current working directory, the privileges 

inherited by the task, etc. 
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Load Balancing in General 

Enormous and diverse literature on load balancing 

Computer Science systems 

Computer Science theory 

Operations research (OR) 

Application domains 

A closely related problem is scheduling, 
which is to determine the order in which 
tasks run 
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Understanding Load Balancing Problems 

Load balancing problems differ in: 

Tasks costs 
Do all tasks have equal costs? 

If not, when are the costs known? 
Before starting, when task created, or only when task ends 

Task dependencies 
Can all tasks be run in any order (including parallel)? 

If not, when are the dependencies known? 
Before starting, when task created, or only when task ends 

Locality 
Is it important for some tasks to be scheduled on the same 

processor (or nearby) to reduce communication cost? 

When is the information about communication between tasks known? 
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Task cost spectrum 
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Task Dependency Spectrum 
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Task Locality Spectrum (Data Dependencies) 



13 ECE 677, LB S. Hariri 

Spectrum of Solutions 

One of the key questions is when certain information 
about the load balancing problem is known 

Leads to a spectrum of solutions: 

All information is available to scheduling algorithm, 
which runs before any real computation starts.  
(Static/offline algorithms) 

Semi-static scheduling.  Information may be known at 
program startup, or the beginning of each timestep, 
or at other well-defined points.  Offline algorithms 
may be used even though the problem is dynamic. 

Dynamic scheduling.  Information is not known until mid-
execution.  (online algorithms) 
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Load Balancing Algorithms 

Early works focused on static placement techniques 

     -  seeks optimal or near optimal solution to processor allocation 

Recent works evolved to adaptive load balancing with process 
migration 

A simple approach is to have a central allocation processor that 
receives periodically  

       - load information form all processors 

       - makes process placement decisions   

       - it has a single point of failure and can be a bottleneck 

Distributed process allocation is another complex alternative 
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Static Load Balancing 
Find an allocation of processes to processors to 

        - minimize execution cost 

        - minimize communication cost 

Assumptions: 

        - program consists of a number of modules 

        - cost of executing a module on a processor 

        - volume of data flow between modules 

Problem formulation: 

        - assign modules to processors in an optimal manner within their 
given cost constraints 

        - does not consider the current state of the system when making 
the placement decisions 
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Evaluation of load balancing 

Efficiency 
Are the processors always working? 

How much processing overhead is associated with the load 
balance algorithm? 

Communication 
Does load balance introduce or affect the communication 

pattern? 

How much communication overhead is associated with the load 
balance algorithm? 

How many edges are cut in communication graph? 
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Partitioning Techniques 

Regular grids (-: Easy :-) 
striping 

blocking 

use processing power to divide load more fairly 

Generalized Graphs 
Levelization 

Scattered Decomposition 

Recursive Bisection 
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Levelization 

Begin with a boundary 
Number these nodes 1 

All nodes connected to a level 1 node are 
labeled 2, etc. 

Partitioning is performed 
determine the number of nodes per processor 

count off the nodes of a level until exhausted 

proceed to the next level 
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Levelization 
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Scattered Decomposition 

Used for highly irregular grids 

Partition load into a large number r of 
rectangular clusters such that r >> p 

Each processor is given a disjoint set of 
r/p clusters. 

Communication overhead can be a problem 
for highly irregular problems. 
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Greedy Bisection 

Start with a vertex of the 
smallest degree 

least number of edges 

Mark all its neighbors 

Mark all its neighbors 
neighbors, etc. 

The first n/p marked 
vertices form one 
subdomain 

Apply the algorithm on the 
remaining 
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The O-1 Integer Programming Approach 

C ij   : coupling factor = the number of 
data units transferred form module i to 
module j. 

d kl    : interprocessor distance = the 
cost of transferring one data unit from 
processor k to processor l. 

qik    : execution cost = the cost of 
running module i on processor k. 
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The O-1 Integer Programming Approach 

If i and j are resident on processors k and l 
respectively, then their total communications 

cost can be expressed as Cij * dkl.  
In addition to these quantities the assignment 
variable is defined as: 

Xik = 1,  if module i is assigned to processor k. 

         0, otherwise          

Using the above notation, the total cost of 
processing a number of user modules is given as: 

Si Sk  ( qik Xik  + Sl Sj ( cij  *  dkl )  Xik Xjl ) 
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The O-1 Integer Programming Approach 

In this scheme, constraints can be added easily to the 
problem ( Memory constraints) 

Si  Mi Xik <= S k 

         Mi   = memory requirements of module i 

         Sk   =  memory capacity of processor k 

Non-linear programming techniques or branch and bound 
techniques can be used to solve this problem 

The complexity of such algorithms is NP-complete 

Main disadvantage is the need to specify the values of 
large number of parameters 
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Semi-Static Load Balance 
If domain changes slowly over time and locality is important 

use static algorithm 

do some computation (usually one or more timesteps) allowing some 
load imbalance on later steps 

recompute a new load balance using static algorithm 

Often used in: 

particle simulations, particle-in-cell (PIC) methods 

poor locality may be more of a problem than load imbalance as particles 
move from one grid partition to another 

tree-structured computations  

grid computations with dynamically changing grid, where changes are 
slowly 
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Self-Scheduling 

 

Self scheduling: 

Keep a centralized pool of tasks that are available to run 

When a processor completes its current task,  it picks up a task 
from the pool 

If the computation of one task generates more tasks, add them to 
the pool 

Originally used for: 

Scheduling loops by compiler (really the runtime-system) 

Original paper by Tang and Yew, ICPP 1986 
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When is Self-Scheduling a Good Idea? 

Useful when: 

A batch (or set) of tasks without dependencies 

can also be used with dependencies, but most analysis 
has only been done for task sets without 
dependencies 

The cost of each task is unknown 

Locality is not important 

Using a shared memory multiprocessor, so a 
centralized pool of tasks is fine 
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Variations on Self-Scheduling 

Typically, don’t want to grab smallest unit of parallel work. 

Instead, choose a chunk of tasks of size K. 

If K is large, access overhead for task queue is small 

If K is small, we are likely to have even finish times (load balance) 

Four variations: 

Use a fixed chunk size 

Guided self-scheduling 

Tapering 

Weighted Factoring 
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Fixed Chunk Size 

Apply  a technique for computing the optimal chunk size 

 

Requires a lot of information about the problem 
characteristics 

e.g., task costs, number 

 

Results in an off-line algorithm.  Not very useful in 
practice.  

For use in a compiler, for example, the compiler would have to 
estimate the cost of each task 

All tasks must be known in advance 
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Guided Self-Scheduling 
Idea: use larger chunks at the beginning to avoid excessive 
overhead and smaller chunks near the end to even out the finish 
times. 

 

The chunk size Ki at the ith access to the task pool is given by  

                        ceiling(Ri/p) 

where Ri is the total number of tasks remaining and 

p is the number of processors 

 

See Polychronopolous, “Guided Self-Scheduling: A Practical 
Scheduling Scheme for Parallel Supercomputers,” IEEE 
Transactions on Computers, Dec. 1987. 
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Tapering 

Idea: the chunk size, Ki is a function of not 
only the remaining work, but also the task 
cost variance 

variance is estimated using history 
information 

high variance => small chunk size should be 
used 

low variant => larger chunks OK 
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Distributed Task Queues 

The obvious extension of self-scheduling to distributed memory is: 

a distributed task queue (or bag) 

 

When are these a good idea? 

Distributed memory multiprocessors 

Or, shared memory with significant synchronization overhead 

Locality is not (very) important 

Tasks that are: 

known in advance, e.g., a bag of independent ones 

dependencies exist, i.e., being computed on the fly 

The costs of tasks is not known in advance 
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Engineering Distributed Task Queues 

A lot of papers on engineering these systems on various machines, and 
their applications 

If nothing is known about task costs when created 

organize local tasks as a stack (push/pop from top) 

steal from the stack bottom (as if it were a queue), because old tasks likely 
to cost more 

If something is known about tasks costs and communication costs, can be 
used as hints.  (See Wen, UCB PhD, 1996.) 

Part of Multipol (www.cs.berkeley.edu/projects/multipol) 

Try to push tasks with high ratio of cost to compute/cost to push 

Ex: for matmul, ratio = 2n3 cost(flop) / 2n2 cost(send a word)  

Goldstein, Rogers, Grunwald, and others (independent work) have all 
shown  

advantages of integrating into the language framework 

very lightweight thread creation 

CILK (Leicerson et al)  (supertech.lcs.mit.edu/cilk) 
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DAG Scheduling 
For some problems, you have a directed acyclic graph (DAG) of 
tasks 

nodes represent computation (may be weighted) 

edges represent orderings and usually communication (may also be 
weighted) 

not that common to have the DAG in advance 

Two application domains where DAGs are known 

Digital Signal Processing computations 

Sparse direct solvers (mainly Cholesky, since it doesn’t require 
pivoting).  

The basic offline strategy: partition DAG to minimize 
communication and keep all processors busy 

NP complete, so need approximations 

Different than graph partitioning, which was for tasks with 
communication but no dependencies 

See Gerasoulis and Yang, IEEE Transaction on P&DS, Jun ‘93. 
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Mixed Parallelism 

As another variation, consider a problem with 2 levels 
of parallelism 

course-grained task parallelism 

good when many tasks, bad if few 

fine-grained data parallelism  

good when much parallelism within a task, bad if little 

Appears in: 

Adaptive mesh refinement 

Discrete event simulation, e.g., circuit simulation 

Database query processing 

Sparse matrix direct solvers 
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Mixed Parallelism Strategies 
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Performance-Effective and Low-Complexity Task 
Scheduling for Heterogeneous Computing 

IEEE Transactions on Parallel and Distributed  Systems, 
Vol. 13, No. 3, March 2002, Topcuoglu, Hariri, Wu 

- Scheduling Algorithms 

- Listing – order tasks based on priority, and then processor 
allocation to minimize objective function 

- Clustering – map a given graph to an unlimited number of clusters 

- duplication 

-Guided random search based on Genetic algorithms – long 
execution time 
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Classification of Static Scheduling Algorithms 

ECE 677, LB S. Hariri 
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- Task scheduling for heterogeneous processors is less 
studied due to the increase in complexity 

- Heterogeneous Earliest-Finish Time (HEFT) Algorithm 

- Critical Path on a Processor (CPOP) Algorithm 

 

ECE 677, LB S. Hariri 
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Task-Scheduling Problem 
Assume that we know the execution time for each task, ni on 
each processor pj (computation cost matrix) 

- Communication cost between tasks 

- Define Earliest Start Time (EST) and Earliest Finish Time 
(EFT) for each task. We compute that for each task in the 
graph starting from the entry task. 

- Actual Start Time AST (nm) and Actual Finish Time AFT (nm) 
determine the actual time to start a task and its finishing time 
on an assigned processor 

-  Makespan is the actual finish time after all graph tasks are 
scheduled and complete their execution 

- Objective Function 

-Find the schedule of tasks that minimizes the makespace (schedule length is 
minimized) 
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Task-Scheduling for Heterogenesous Enviornment 

Dynamic Level Scheduling (DLS) Algorithm 

  each step, the algorithm selects (ready node, available processor) 
that maximizes the dynamic level: smallest time to start from a given 
task 

 Mapping Heuristic (MH), estimate the cost of running each task on 
each processor, schedule tasks that minimizes the ready time (when 
the processor is ready to execute the next task) 

  Levelized-Min Time (LMT) algorithm 

 It is a two phase Algorithm 

 Phase I: group all tasks that can execute in parallel using the level 
attribute 

 Phase 2:  assign each task to fastest available processor 

 Each task is assigned to a processor that minimizes the sum of the task’s 
computation cost and the  total communication costs with the tasks in the 
previous levels 
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HEFT and CPOP Algorithms 

They are based on upward and downward ranking 

Upward rank represents the length of the critical path from 
task ni to the exist task, including the communication cost of 
task ni, computing from the exit node 

-Downward ranking represents the length of the critical path 
from ni to the entry task of the  

- Heterogeneous-Earliest Finish Time (HEFT) Algorithm 

- Task Prioritizing Phase-  for computing the priorities of all 
tasks 

- Processor Selection Phase: for selecting the tasks in the 
order of their priorities and scheduling each task on its best 
processor, which minimizes the task’s finish time 

-  Rank tasks based on upward rank value 
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HEFT Algorithm 

 Set the computation costs of tasks and 
communication costs of edges 

 Compute rank for all tasks by traversing graph 
upward, starting from the exit task 

 Sort all tasks in a scheduling list by decreating order 
of rank  

While loop  

- select first task, ni from the lsit 

For each processor compute EFT (ni, pk) 

Assign task ni to the processor pj that minimizes EFT of 
task Ni 

ECE 677, LB S. Hariri 
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HEFT Algorithm  

ECE 677, LB S. Hariri 
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Critical Path on a Processor (CPOP) 

ECE 677, LB S. Hariri 
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Scheduling Metrics 

1. Schedule Length Ratio (SLR). The ratio of the 
schedule length time over the shortest possible 
execution of the graph 

2. Speedup: The sequential execution time of the 
graph over the parallel execution 

3. Number of Occurrences of Better Quality of 
Schedules 

1. Number of time each algorithm produced better results 

4. Running Time of the Algorithm 

1. How long it takes the algorithm to produce its results 

5. Build a random graph generator to compare 
different algorithms (around 56K different graphs 
are used in the comparison) 



47 ECE 677, LB S. Hariri 



48 ECE 677, LB S. Hariri 



49 ECE 677, LB S. Hariri 

Dynamic Load Balancing 

Consider adaptive algorithms 

After an interval of computation 

mesh is adjusted according to an estimate of the 
discretization error 

coarsened in areas 

refined in others 

Mesh adjustment causes load imbalance 
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Repartitioning 

Consider: dynamic situation is simply a 
sequence of static situations 

Solution: repartition the load after each 
some partitioning algorithms are very quick 

Issues 
scalability problems 

how different are current load distribution and new load distribution 

data dependencies 
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Dynamic Load Balancing 

Load is statically partitioned initially 

Adjust load when an imbalance is detected. 

Objectives 

rebalance the load 

keep edge cut minimized (communication) 

avoid having too much overhead 
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Centralized DLB 

Control of the load is centralized 

Two approaches 
Master-worker (Task scheduling) 

Tasks are kept in central location 

Workers ask for tasks 

Requires that you have lots of tasks with weak locality requirements. 
No major communication between workers 

Load Monitor 

Periodically, monitor load on the processors 

Adjust load to keep optimal balance 
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Decentralizing DLB 

Generally focused on work pool 

Two approaches 

Hierarchy 

Fully distributed 
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Adaptive Load Balancing 

Need to avoid high communication 
overhead during load information exchange 

Need to guard against instability 

migrate many processes to lightly loaded 
processor that soon becomes heavily 
loaded 

      => processor thrashing 

 How do you evaluate the Performance of 
LB Algorithms 

 effectiveness: measure improvement in performance 
with and without LB 
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Adaptive Load Balancing (cont) 

DLB Algorithm components: 
 Activation Policy – When we start the LB Algorithm 

 most of the techniques proposed are threshold policies.  

 When the load on one computer exceeds certain threshold, it becomes 
heavily loaded (sender) 

 Selection Policy: Which Process/Task to migrate? 

 Location Policy: Who can share load? 

 Polling is a common technique to find out whether a node is suitable for 
load sharing. 

 Information Policy: What type of information? 

 it determines what information about the states of other nodes need 
to be collected, where it should be collected from, and when/how 
offten it should be collected. 
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Information Policy 

Most of information policies are based on 
the following three types: 
 Demand-driven.  A node collects information about 
other nodes only when it becomes either a sender (busy) 
or a receiver node (idle) 

 Periodic. Nodes exchange load every period T 

 State-driven: whenever nodes state changes 
by a certain degree 
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Information Policy: Processor Load 

We need to obtain from the OS the current 
load on each processor 

The measure will be calculated frequently and 
thus should be done efficiently 

It should adopt swiftly to changes in load state 

One could use a load estimation program that 
constantly runs to determine the intervals 
between successive runs. 

 Long T -> processor load is high 
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Information Policy: Processor Load 

Use the Unix five-minute average which gives the length 
of the run queue 

Use number of processes ready to run on the CPU at a 
given instant of time 

We do need to maintain stability: 

         - cost of load balancing do not outweigh its benefits 
over a system using no load balancing 

      => Load value should be averaged over a period at 
least as long as the time to migrate on average process 

       virtual load = actual load + migrated processes load 
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Bryant and Finkel (1981) used the remaining service time RE (tK ) 
to estimate the response time of a process arriving at one 
processor J(P) which has J jobs in its queue 

R  = RE (tK ); remaining time equal to current service time 

for all J  belong to J(P)   Do 

 begin 

  if RE (tJ )  < RE (tK ) 

  then R = R + RE (tJ )  

  else  R = R + RE (tK ) 

 end 

RSPE (K, J(P)) = R 

Where J(P): set of jobs resident on processor P. 

Processor Load Measurement (cont) 
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Processor Load Measurement (cont) 

Ferrari (1985) proposed a linear 
combination of all main resource 
queues as a measure of load 

This technique determines the 
response time of a Unix command in 
terms of resource Queue lengths 

The analysis assumes steady-state 
system and certain queueing 
disciplines for resources 
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Information Policy: Frequency of 
Information Exchange 

The state information will vary in its 
degree of accuracy since computers 
are loosely coupled 

We need sufficient accuracy  

to avoid instability, we need to 
increase frequent load exchange   

=> This degrades performance 
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Information Policy: Demand Driven: 

In Maitre d' systems (Bershad 1985), one 
daemon process examines the Unix five-minute 
load average. If the processor can handle more 
processes, it will broadcast this availability 

Other alternative is to broadcast a message 
when the processor becomes idle ==> 
announcing willingness to accept migrating 
processes 

This approach works efficiently if the network 
uses a broadcast communications medium 
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Global System Load Approach 
Processors calculate the load on the whole 
system and adjust their own load relative to 
this global value 

When the processor load differs significantly 
from the average load, load balancing is 
activated 

  The difference should not be too 
small and also not too large 

Information Policy: Demand Driven 
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Information Policy: Demand Driven 

Gradient model algorithm: 
view global load in terms of a collection of distances 

from a lightly loaded processor 
the proximity (Wi   of a processor is calculated as its minimum 

distance form a lightly loaded processor 

 gk  is set to zero if the processor is lightly loaded  
Wi  =minK  {diK, over K where gk =0 }    if  $ K|gK  = 0 

  Wi  = Wmax ,  if  forall K, gk  = Wmax ,  

   Wmax = D(N) + 1 

  D(N) = max{diJ , forall i, J belong to N}; Diameter Distance 
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Information Policy - Demand Driven 

global load is then represented 
by a gradient surface 

 GS = (W1 , W2 , ... Wn ) 

   it gives a route to a lightly 
loaded processor with minimum 
cost 
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Information Policy: Periodic Exchange 

each processor cyclically sends load 
information to each of its neighbors; to pair 
with a processor that differs greatly from 
its own 

load information consists of a list of all local 
jobs, together with jobs that can be 
migrated to the sender of load message 
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Information Policy: State-change Driven 

Load vector of a processor neighbors is 
maintained and updated when a state 
transition occurs:  L_N, N_L, N_H, H_N 

to reduce number of messages sent 

       N  - L_load message is sent when N_L 
transition if previous state was heavy 

         - broadcast N_H transitions and only 
notify neighbors of H_N transition when 
process migration is negotiated 
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Activation Policy 

Static threshold values: 
when load goes beyond this threshold, processes 
should be off loaded 

 this value is chosen experimentally 

Under loaded processor could seek to 
accept processes form other peer 
processors 
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Activation Policy (cont) 

Difference of a processor's load from that of 
its peers can be used to change node status 
(sender or receiver)  

   - When difference exceeds some bias, then 
migration is a viable proposition 

   - Examine periodically the response time of  
processes if moved to a remote processor 

       - If the response time is significantly 
better, the processes are migrated 
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Selection Policy 

It selects a task for transfer once a 
node is identified as a sender 

Which processes to be migrated? 
consider only newly-arriving processes 

we need to limit the number of times a process is 
permitted to migrate 

move the one that will benefit most from remote 
execution. 
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Selection Policy - Cont. 
Kreuger and Finkel (1984) proposed the following: 

1. Migration of a blocked process may not prove useful, since this may not 
effect local processor load 

2. 2. Extra overhead will be incurred by migrating the currently 
scheduled and running process 

3. The process with longer response time can better afford the 
cost of migration 

4. Smaller processes put less load on the communications network 

5. The process with the highest remaining service time will 
benefit most in the long-term from migration 

6. Processes which communicate frequently with the intended 
destination processor will reduce communications load if they 
migrate 

7. Migrating the most locally demanding process will be of 
greatest benefit to local load reduction 
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Define a method by which processors cooperate 
to find a suitable location for a migrating 
process 

Methods can be categorized into two groups: 
sender-initiated and receiver initiated 
methodsder-initiated approaches: 
 initiating load-balancing from an overloaded processor is widely studied 

Eager (1986) studied 3 simple algorithms 

         - activation policy is a simple static threshold 

         (a) choose a destination processor at random for a process 
migrating from a heavily-loaded processor.  

  Number of transfers is limited to only one 

Location Policy 
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Location Policy 

(b) choose a processor at random and then probe 
its load.  

If it exceeds a static threshold,  

another processor is  probed and so on until one 
is found in less than a given number.   

Otherwise, the process is executed locally 

 (c) poll a fixed number of processors, requesting 
their current queue lengths and selecting the 
one with the shortest queue 
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Stankovic (1984) proposed three algorithms which are 
based on relative difference between processor loads 

- information exchange is through periodically 
broadcasting local values 

       (a) choose least-loaded processor if load 
difference is larger than a given bias 

        (b) if difference >  bias 1, migrate one process 

        (c) if difference  >  bias 2, migrate two processes 

        (d) similar to (a), except no further migration to 
that processor for a given period 2t 

Location Policy (cont) 
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When a processor becomes overloaded, it 
broadcasts the fact 

under-loaded processor responds and indicates 
number of processes that can be accepted and 
adjusts its load 

if no response, it assumes that the average value 
is too low and increases this global value and 
then broadcasts it 

it adopts fast to fluctuations in system load 

Location Policy (cont) 
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Receiver-Initiated Approaches 

(a) when the load on one processor falls  

 below the static threshold (T),  

    it polls random processors to find one  

 where if its process is migrated  

 would not cause its load to be below 
T. 
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 (b) to avoid migrating an executing 
process,  

a reservation is made to migrate the 

 next  newly-arriving process 

 

simulation results showed that it does not 
perform as well as (a) approach 

Receiver-Initiated Approaches - cont. 
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For broadcast networks, Livny and 
Melman (1982) proposed two  
receiver-initiated policies: 

     (a) A node broadcasts a status 
message when it becomes idle  

  

Location Policy (cont) 
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Location Policy (cont) 

A node broadcasts a message when it becomes idle 

Receivers carry out the following actions: 

i.  If ni > 1 continue to step ii, else terminate algorithm. 

ii. Wait  D/n  time units, where D is a parameter depending on 
the speed of the communications; by making this value dependent on 
processor load, more heavily-loaded processors will respond more quickly. 

iii. Broadcasting a reservation message if no other 
processor has already done so (if this is the case 
terminate algorithm). 

iv. Wait for reply 

v. If reply is positive, and ni > 1, migrate a process to the 
idle processor. 
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Location Policy (cont) 

 (a) method might overload the communication medium, so a second 
method is to replace broadcasting by polling when idle. The 
following steps are taken when a processor's queue length reaches 
zero. 

          i. Select a random set of R processors (ai, ... aN  ) and set a 
counter j=1. 

          ii. Send a message to processor aj and wait for a reply. 

          iii. The reply from aj will either be a migrating process or an 
indication that it has no processes. 

          iv. If the processor is still idle and j<R, increment j and go to 
step ii else stop polling. 
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Load Balancing Algorithms 

Sender-Initiated Algorithms  

Receiver-Initiated Algorithms 

Symmetrically Initiated Algorithms 

Adaptive Algorithms 
A Stable Symmetrically Initiated Algorithm 

A Stable Sender-Initiated Algorithm 
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Sender-Initiated Algorithms 

We study three simple algorithms presented by 
Eager et al 

Transfer policy: All three algorithms use a 
threshold policy based on CPU queue length 

a node is identified as a sender if the originating task at that node 
makes the queue length > T 

a node is identified as a receiver for a remote task if its queue length is 
still < T when it accepts that task 

Selection Policy: consider only newly arrived 
tasks for transfer 

Location Policy: Random, Threshold, Shortest 
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Sender-Initiated Algorithms- Cont. 

Location Policy: Random Policy 
a task is simply transferred to a node 
selected at random 

useless task transfers can occur  

it is instable algorithm 

it provides performance improvement over 
no load sharing if the load is moderately low 
to average 
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Sender-Initiated Algorithms- Cont 

Location Policy: Threshold 
useless task transfers can be avoided by 
polling a node (selected at random) to 
determine if it is a receiver 

if so, the task is transferred to the 
selected node 
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Sender-Initiated Load Sharing with 
Threshold Location Policy  

Select node 

‘i’ randomly 

Poll-set = Nil 

Queuelength + 1 

 > T 

‘i’ in Poll-set Poll-set = Poll-set U ‘i’ Poll node 

‘i’ 

Transfer task 

to ‘i’ 

No. of Polls < 

   PollLimit 

queue  Length at i 

< 

T 

Queue the 

task locally 

Yes 

No 

Yes 
No 

Yes 

Yes 

No 

No 

Task Arrive 
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Sender-Initiated Algorithms - Cont. 

Location Policy: Shortest 
a number of nodes are selected at random and are polled to 
determine their queue length 

the node with the shortest queue length is selected as the 
destination for task transfer unless its 

queue length  >= T 

the performance improvement of shortest location policy over 
threshold location policy was shown to be marginal 

Information Policy: It is based on demand-
driven policy 
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Receiver-Initiated Algorithms 

the load distributing activity is initiated from an 
under-loaded node (receiver) trying to obtain a 
task from a sender node 

Activation (Transfer) Policy:  It is based on a 
threshold policy using CPU queue length. The 
transfer policy is triggered when a task 
departs. If the local queue length falls below 
T, the node is identified as a receiver 

Selection Policy:   
select the newly arrived tasks 

the overhead incurred by transferring the task is less than the 
expected performance 

a task is selected if response time will be improved upon transfer 
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Receiver-Initiated Algorithms 

Location Policy: a node selected at 
random is polled to determine if 
transferring a task from it would not 
place its queue length below T 

Information Policy: it is based on 
demand-driven because the polling 
activity starts only after a node 
becomes a receiver 
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Receiver-Initiated Load Sharing 

Select node 

‘i’ random;y 

Poll-set = Nil 

Queuelength 

       < T 

‘i’ in Poll-set Poll-set = Poll-set U ‘i’ 
Poll node 

‘i’ 

Transfer task 

from ‘i’ to j 

No. of Poll 

   < PollLimit 

queue length 

> 

T 

Wait for a  

predetermined 

period 

Yes 

No 

Yes 

Yes 

No 

No 

Task departure at ‘j’ 
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Receiver-Initiated Algorithm 

Stability: do not cause system 
instability 

at high loads, there is a high 
probability to find a sender 

at low loads, there are few senders, 
but more receiver-initiated polls 
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Receiver-Initiated Algorithm 

Drawbacks: 
under most of CPU scheduling techniques, newly 
arrived tasks are provided quickly quantoms of 
service 

consequently, most of task transfers are preemptive 
and thus are expensive 

sender-initiated algorithms can make a greater use 
of non-preemptive transfers 
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Symterically Initiated Algorithms 

both senders and receivers search for 
receivers and senders, respectively 

at low system loads, sender-initiated 
component is more successful in finding 
underloaded nodes 

at high system loads, receiver-initiated 
component is more successful in finding 
overloaded nodes 

this scheme has the disadvantages of both 
schemes. 
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The Above-Average Algorithm 

proposed by Krueger and Finkel, it tries to 
maintain the load at each node within an 
acceptable range of the system average 

transfer policy: it is a threshold policy that 
uses two adaptive thresholds: 
upper and lower thresholds that are equidistant from the node’s 

estimate of the average load across all nodes 

nodes above the upper threshold are considered senders  

while those less than the lower thresholds are considered receivers 

nodes between these two thresholds are considered to be acceptable 

location policy: it has two components: sender-
initiated component 
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The Above-Average Algorithm-Cont. 

Sender-Initiated Component 
a sender broadcasts a TooHigh messsage, set TooHigh timeout 

alarm, and listens for an Accept message 

a receiver that receivers a TooHigh message cancels its 
TooLow timeout, sends an Accept message, increases its load 
value, and sets an AwaitingTask timeout 

on receiving an Accept message, the sender node chooses the 
best task to transfer 

on expiration of TooHigh timeout, if no Accept message has 
been received, the sender broadcasts a ChangeAverage 
message to increase the average load estimate at the other 
nodes 
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The Above-Average Algorithm-Cont  

Receiver-Initiated Component 
when a node becomes a receiver, it broadcasts  a TooLow 

message, sets a TooLow timeout alarm, and starts listenning 
for a TooHigh message 

if a TooHigh message is received, the receiver sends an Accept 
message, increases its load, and sets a timeout alarme 

if the TooLow timeout expires before receiving any TooHigh 
messages, the receiver broadcasts a ChangeAverage 
message to decrease the average load estimate at the other 
nodes 
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The Above-Average Algorithm-Cont 

Selection Policy: Can use any of the 
techniques discussed before. 

Information Policy: it is based on 
demand-driven policy. 
the system load average is determined individually at each 

node without exchanging many messages. 

the acceptable range determines the responsiveness of the 
algorithm 

when the communication network is heavily (lightly) loaded, the 
acceptable range can be inccreased (decreased) by each 
node individually 
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Adaptive Algorithms- A Stable 
Symetrically Initiated Algorithm 

 the main instability in the previous algorithms is 
caused by the indiscriminate polling by the sender’s 
initiated component 

 this scheme utilizes the information gathered during 
polling to classify nodes as senders, receivers, or OKs 

 each node maintains a data structure that includes 
Sender List, Receiver List and OK List 

 initially, each node assumes that every other node is a 
receiver 

 Transfer Policy: it has two components:sender-
initiated and receiver-initiated components 
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A Stable Symetrically Initiated 
Algorithm-Cont. 

Sender-Initiated Component: 

the sender node polls the node at the head of the 
Receivers List 

the polled node puts the sender node  at the head of 
its Senders List, and informs the sender about its 
status 

At the sender, if it is not a receiver, it is moved from 
the Receivers List and put in the proper list 

the polling process stops if a suitable receiver is 
found 
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A Stable Symetrically Initiated 
Algorithm-Cont 

Receiver-Initiated Component 

The nodes are polled in the following way: 

head to tail in the Senders List; use up-to-date 
information first 

tail to head in the OK List; use  out-to-date 
information first 

tail to head in the Receivers List; use out-to-
date information first 

it stops when it found a sender node 
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A Stable Symetrically Initiated 
Algorithm-Cont 

Selection Policy: sender initiated 
component considers only newly arrived 
tasks, while receiver-initiated 
component can use a variety of 
techniques 

Information Policy: it is a demand-
driven policy since the polling activity 
starts when a node becomes a sender 
or a receiver 
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A Stable Symetrically Initiated 
Algorithm-Cont 

Discussion: 

at high system loads, many unsuccessful polls  for nodes result in their 
removal from the Receivers list 

thus future sender-initiated polls will terminate 
at high system loads 

at  low system loads,  receiver-initiated polling generally fail, 
do not affect system performance since there is plenty CPU 
capacity available in the system 

with update information, the Receivers List is 
accurately reflecting the system state, and 
sender-initiated activity will succeed with a few 
polls 
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A Stable Sender-Initiated Algorithm 

this algorithm does not cause 
instability 

load sharing is only due to 
nonpreemptive task transfers 

it has the same sender-initiated 
component but modified receiver-
initiated component 
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A Stable Sender-Initiated Algorithm 

Receiver-Initiated Component 
maintain a state vector about system state which it 
lets each node to keep track of which list (sender, 
receiver, OK) it belongs to at each node in the 
system 

when a node becomes a receiver, it informs all nodes 
that are misinformed about its current state 

no preemptive transfers because 
the sender-initiated component 
performs the load sharing 
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Performance Comparison 

Assumptions: 

the average service demand for tasks 
is one time unit 

task interarrival times and service 
demands are independently 
exponentially distributed 

the system load is homogeneous and 
has 40 identical nodes 
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Performance Comparison 

Algorithms Studied are: 
M/M/1              A distributed system that performs no load        

   distributing 

RECV               Receiver-initiated algorithm 

RAND              Sender-initiated algorithm with random   
 location policy 

SEND               Sender-initiated algorithm with threshold  
  policy 

ADSEND       Stable sender-initiated algorithm 

SYM                Symetrically initiated algorithm 

ADSYM         Stable symemetrically initiated algorithm 

M/M/K           A distributed system that performs ideal load  
          distributing 
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Receiver-initiated vs. Sender-initiated Load Balancing  
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Symmetrically Initiated Load Sharing 
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Stable Load Sharing Algorithms 
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Selecting A Suitable Load Sharing 
Algorithm 

If the system never attains high loads, 
sender-initiated algorithms give 
acceptable performance improvement 

If the system can reach high loads, use 
stable scheduling algorithms 

If the system experience a wide range 
of load fluctuations, the stable 
symmetrically initiated scheduling 
algorithm is recommended 
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Selecting A Suitable Load Sharing 
Algorithm 

For systems with wide range of 
load fluctuations and has a high 
cost for migration partially 
executed tasks, stable sender-
initiated algorithms are 
recommended 

For systems that experience 
heterogeneous work arrival, 
adaptive stable algorithms are 
recommended 


