
Replication and Recovery in
Distributed Systems

ECE 677
University of Arizona

ECE 677, Redundancy Management Salim Hariri

2

Replication

Advantages :
- reduce communication traffic, => improve response time
- increase system availability, => reduce the effect of server and

communication failures
- several clients requests can be handled in parallel => improve system

throughput

Replication Management Techniques
q  Active Redundancy
q  Passive Redundancy
q  Semi Active Redundancy

ECE 677, Redundancy Management Salim Hariri

3

Replication Abstract Model

Request (RE): the client submits an operation to one (or more)
replicas.

Server coordination (SC): the replica servers coordinate with
each other to synchronize the execution of the operation
(ordering of concurrent operations).

Execution (EX): the operation is executed on the replica
servers.

Agreement coordination (AC): the replica servers agree on the
result of the execution (e.g., to guarantee atomicity).

Response (END): the outcome of the operation is transmitted
back to the client.
ECE 677, Redundancy Management Salim Hariri

4

Phase 1:
Client
contact

Client

Replica 1

Replica 2

Replica 3

Phase 3:
Execution

Phase 4:
Agreement
Coordination

Phase 5:
Client
response

Phase 2:
Server
coordination

Client

Update

Update

Abstract model with the five phases

ECE 677, Redundancy Management Salim Hariri

5

Three replication techniques.

1. Active Replication,

2. 2. Passive Replication,

3. 3. Semi-Active Replication.

 Replication in Distributed System

ECE 677, Redundancy Management Salim Hariri

6

 Replication in Distributed System

Active Replication (Modular Redundancy)

1. The client sends the request to the servers using an Atomic
Broadcast.

2. Server coordination is given by the total order property of the
Atomic Broadcast.

3. All replicas execute the request in the order they are delivered.

4. No coordination is necessary, as all replica process the same
request in the same order. Because replica are deterministic,
they all produce the same results.

5. All replica send back their result to the client, and the client
typically only waits for the first answer.

ECE 677, Redundancy Management Salim Hariri

7

Phase 1:
Client
contact

Client

Replica 1

Replica 2

Replica 3

Phase 3:
Execution

Phase 4:
Agreement
Coordination

Phase 5:
Client
response

Phase 2:
Server
coordination

Update

Update

Update

Client

Active Replication

Atomic
Broadcast

ECE 677, Redundancy Management Salim Hariri

8

 Replication in Distributed System

Passive Replication (Primary-stand-by)

1. The client sends the request to the primary.

2. No initial coordination is needed.

3. The request is executed in the primary.

4. By sending the updated information to the backups, the primary
coordinates with the other replicas.

5. The primary sends the answer to the client.

ECE 677, Redundancy Management Salim Hariri

9

Phase 1:
Client
contact

Replica 1

Replica 2

Replica 3

Phase 3:
Execution

Phase 4:
Agreement
Coordination

Phase 5:
Client
response

Phase 2:
Server
coordination

Update

Client Client

Apply

Apply

 V.S.

Broadcast

Passive Replication

ECE 677, Redundancy Management Salim Hariri

10

 Replication in Distributed System

Semi-Active Replication (Weighted Voting)

1.  By using an Atomic Broadcast the client sends the request to
the servers.

2.  The servers coordinate by using the order given by this Atomic
Broadcast.

3. All replicas execute the request in the order they are delivered.

4. In case of a non deterministic choice, the leader informs the
followers using the View Synchronous Broadcast.

5. The response is sent back to the client by the servers.

ECE 677, Redundancy Management Salim Hariri

11

Phase 1:
Client
contact

Client

Replica 1

Replica 2

Replica 3

Phase 3:
Execution

Phase 4:
Agreement
Coordination

Phase 5:
Client
response

Phase 2:
Server
coordination

Client

Apply

Apply

VS cast

Semi-active Replication

Atomic
Broadcast

Update

Update

Update

Non deterministic
point

ECE 677, Redundancy Management Salim Hariri

12

Majority Consensus

A request to be accepted and applied to all the
representatives, only a majority of servers need
approve it
1. Clients request updates by submitting the old values,
their timestamps, and the new values to one server
2. Each request is evaluated by servers using a voting
rule
3. If request is accepted, each server subsequently
does the update.

ECE 677, Redundancy Management Salim Hariri

13

Majority Consensus (cont)

server
OK * 4

server

client

server

server

server server

server
OK * 4

server

client

server

server

server server

OK

OK

OK

OK
OK * 2

OK * 3

ECE 677, Redundancy Management Salim Hariri

14

Majority Consensus (cont)

Step Request S1 S2 S3
1 Client -> S1:Read(a)
2 Client -> S1:Write(a-$2) OK
3 S1 -> S2 : Request consensus OK
4 S2 votes OK OK OK
5 S2 accepts update OK DONE
6 S2 -> S1 do update DONE DONE
7 S2 -> S3 do update DONE DONE DONE

Replicated update request : R
Operation Timestamp
Read(a) tl
Write(a-$2) tl

ECE 677, Redundancy Management Salim Hariri

15

Majority Consensus with Weighted Voting

Each representative has a number of votes stored in
the file suite definition
Each read operation must first obtain a read quorum of
r votes before it can proceed
Each write operation must obtain w votes before it can
proceed (w > half)

 if less than w can be found, non-current
representatives are made current before continuing in
the vote

ECE 677, Redundancy Management Salim Hariri

16

Majority Consensus with Weighted Voting

version number = 10
 r = 2 w = 3
UFID1 S1 2
UFID2 S2 1
UFID3 S3 1

File suite prefix P stored in each representative

UFIDs of
representatives

votes of
representatives

server ID’s of servers with
representatives

File suite prefix for Gifford’s algorithm
ECE 677, Redundancy Management Salim Hariri

17

Majority Consensus with Weighted Voting

votes = 1
version = 10

votes = 1
version = 10

votes = 2
version = 10

Write
w = 3

client

server
S1

server
S3

server
S2

vn. 10, 2 votes

vn. 10, 1 vote

ECE 677, Redundancy Management Salim Hariri

18

Recovery

An important requirement for recovery is to have
changes to data items be invisible to other transactions
Common Approaches:

1. Intentions list: list operations involved in a T, they will be executed at the
end whenT is committed
2. Version Approach: changes are stored in new versions which are discarded if
T is aborted

Client operations Phase Server actions
OpenTransaction
file access first phase make tentative copies of
request changed items

CloseTransaction COMMIT

 second phase incorporate tentative copies
 into files

ECE 677, Redundancy Management Salim Hariri

19

Recovery (cont)

V = OpenTransaction;
Twrite(V, f, p1, data1);
TWrite(v, f, p2, data2);
CloseTransaction(V);

other transaction’s
views

data2 data1

transaction V’s view after
writing data1 and data2

Representation of a file during phase 1 of a transaction

ECE 677, Redundancy Management Salim Hariri

20

The Intentions List Approach

Intention list maybe regarded as a log of operations
Commit flag indicates the state of a transaction
The intention list is kept in stable storage

Client operation Phase State Intentions records
Open Transactiion
Twrite(V, f, p1, data1); first phase tentative {“write”, f, p1,data1}
TWrite(v, f, p2, data2); {“write”, f, p2,data2}

Close Transaction COMMIT

 second phase committed intentions->files

ECE 677, Redundancy Management Salim Hariri

21

The Intentions List Approach (cont)

The commit flag is set to
tentative during the first phase
committed/aborted during the second phase

The changes made during the second phase must be performed atomically

Transaction is completed when server executes all the
operations in its intentions list successfully, regardless
of crashes
 => this implies that these operations must be
repeatable

ECE 677, Redundancy Management Salim Hariri

22

The File Versions Approach

File is considered as a sequence of versions
When an operation modifies a file, the server creates a

tentative version which becomes the current version
when T commits

Conflicts during concurrent access of a file:
1. Version conflict

concurrent transactions modify distinct parts of the file (they do not access
the same data)

merge action can be used to resolve this conflict

2. Serializability Conflicts
occurs when using optimistic concurrency control
concurrent transactions have accessed the same data item (some may modify it)
locking scheme can prevent these conflicts
timestamps can resolve them when they occur

ECE 677, Redundancy Management Salim Hariri

23

Version Conflict Resolution

In this scheme, server maintains a transaction record
including a commit flag
T-record contains the UFIDs of each tentative versions
of modified files
T-record is usually stored in stable storage in order to
survive crashes
When a transaction closes, there are several scenarios
no serializability conflicts, tentative versions become
current versions (the changes of more than one
transactions can be merged when they close)

if conflict, all transactions involved in this conflict
are aborted

ECE 677, Redundancy Management Salim Hariri

24

Version Conflict Resolution (cont)

old
version

old
version

Vx
based on Vc

Vy
based on Vc

current
version Vc

committed versions

tentative version

Representation of a file affected by two transaction X and Y

ECE 677, Redundancy Management Salim Hariri

25

Version Conflict Resolution (cont)

Y has committed and X is about to commit. X will be aborted
since it is based on an old version Vc

old
version

current
version (Vy)

Vx
based on Vc

version Vc

committed versions

tentative version

ECE 677, Redundancy Management Salim Hariri

26

Distributed Transaction Service

Server need to coordinate their actions when
the transaction commits in order to achieve
recoverability and concurrency control
Coordinator / worker server :

- coordinator server is the one contacted first by the
client. It is responsible for aborting or committing
the distributed transaction
Each server has an intentions list to record all
updates to local files from transaction

ECE 677, Redundancy Management Salim Hariri

27

Distributed Transaction Service (cont)

NewServer(Trans, server-id, capability) -> ok
 Call from a new server (in AddServer) to the coordinator.
 Caller supplies its server-id and a capability; the coordinator
 records server-id and capability in it worker list

CanCommit? -> yes / no
 Call from coordinator to worker to check whether it can commit
 Worker replies with yes / no

DoCommit(Trans, capability)
 Call from coordinator to worker to telll worker to commit
 its transaction

HaveComitted(Trans, server-id)
 Call from worker to coordinator to confirm that it has committed
 transaction

Internal operations of distributed transaction service

ECE 677, Redundancy Management Salim Hariri

28

Multi-server Commit
There is one coordinator that is responsible for commit/abort of the
transaction when the client calls close transaction
Each server maintains its own transaction record, identifier of the
coordinator server, and its intentions list
The Close Transaction is executed by the coordinator in two phases
- preparing to commit and the commitment itself :
Phase 1 : Preparing to Commit

 1. The coordinator has a list of the server-ids of the workers
and its commit flag is tentative; it issues a CanCommit? call to each
of the workers in the transaction with a timeout.

 2. When the workers receive the CanCommit? call, each one
does as follows

If the value of its commit flag is tentative and the worker is able to commit (i.e. it has not
previously aborted its part of the transaction), it returns yes to inform the coordinator it is
ready.
Otherwise the worker’s commit flag is set to abort and it returns no as the result

ECE 677, Redundancy Management Salim Hariri

29

Multi-server Commit
Phase 2 : Commit

 3. At this point either the coordinator has received ok
or no from each worker, or the Can Commit? call has
timed-out.
If the coordinator has had an ok return value from all of the workers in the

transaction, it sets the value of its commit flag to committed, and makes the
DoCommit call to all the workers. At this point, the transaction is effectively
completed, since the coordinator and the workers are now committed to
perform the updates in their intentions lists, so the coordinator can report
success to the client.

If any of the replies was no or any worker has been time-out, the coordinator
sets its commit flag to abort and calls AbortTransaction in each of the
workers, reporting failure to the client.

 4. When a worker receives the DoCommit call it sets
the value of its flag to committed and sends a
HaveCommited call to the coordinator. It evetually
carries out its intentions list and erases it.

ECE 677, Redundancy Management Salim Hariri

