ECE 677: Distributed Computing Systems

Salim Hariri

High Performance Distributed Computing
Laboratory
University of Arizona
Tele: (520) 621-4378
Acl.arizona.edu//classes/ece677

Fall 2013

Distributed Systems Design Framework
(Cont)

Distributed Computing Paradigms (DCP)

Computation Models Communication Models

Shared

Functional Parallel
Data Parallel Memory

Message Passing

Architecture Models System Level Services

Computer Networks Communication Protocols

ECE 677 Salim Hariri/University of Arizona

Network Technologies

ECE 677

b. RING Network

switch

Salim Hariri/University of Arizona

=
| [

Application Layer

Presentation Layer

Session Layer

Transport Layer

Data Link Layer

ECE 677 Salim Hariri/University of Arizona

Application
Component

Transport
Component

Network
Component

Layered Protocols

— Data link layer header
— Network layer header

— Transport layer header
Session layer header

[Presentation layer header

Application layer header
Y VY v

Message < Data link
layer trailer

R

Bits that actually appear on the network

ECE 677 Salim Hariri/University of Arizona

Network Interface .Responsible for

transferring data from

host memory to the

HOST CPU communication medium
and vice versa

« Perform functions related
to message assembly,
formatting, routing and
error control

/0 MEM

Network Interface

Tradeoff:

= more functions allocated to the network interface,
the less load imposed on the host to process
network functions

= however, the cost of the network interface will

InCrease
ECE 677 Salim Hariri/University of Arizona

Architectural Models

Server Model or client/server model

file server ~ PYIMING SEIVET computing server

workstations

a—

Workstation/Server Model

Majority of dist.systems are based on this model

- Share data between users and applications
- Share file servers and directory servers
- Share expensive peripheral equipment

ECE 677 Salim Hariri/University of Arizona

P 00 I M 0 d e I processor pool

supercomputer
Servers multicomputer
workstations E‘ %‘
- M. ... Ti.
m
e\
. Network :
r - / \ T processor array
,-J L A
e \\

terminals

Rack full of CPUs which can be dynamically allocated to users on demand
- Users given high-performance graphics terminals, such as X terminals
- All the processors belong equally to everyone
- Advantage: better utilization of resources
- Disadvantages: increased communication between the application
program and the terminal, and limited capabilities of terminals

ECE 677 Salim Hariri/University of Arizona

Integrated Model

workstations servers
L. [N] —_ﬁﬁ
terminals LI _ﬁ

super computer

Has advantages of using networked resources and centralized computing systems

- Each computer performs both the role of a server and the role of a client

- Computing resources managed by a single dist. operating system that makes them
appear to the user as a single image system

- Global naming scheme is supported allowing individual computers to share data
and files without regard to their location

Hybrid Model

- Viewed as a collection of three architectural models

- Example: Amoeba system combines Server and Pool Models

ECE 677 Salim Hariri/University of Arizona

Distributed Computing Paradigms: Layer 3

= Layer 2 describes the architectural models, component
properties and services

= It describes what is required to build a distributed system

= Layer 3, it describes how you program distributed
applications; what techniques (models) do you use?

= Also, it describes the types of tools that can be used to
implement the applications

There are two sub-layers:
Computational Model
= Communication Model

ECE 677 Salim Hariri/University of Arizona

COmpUtatiOnaI MOdEl: = Functional Parallel Model

- - Computers execute different threads of
Functional Model control,
- It is referred to as control parallelism,
asynchronous parallelism

Shared Data - Client-Server Models are variations of this
= model
/ ¢ Limitations of Functional Parallelism
START] . .
Computer 1 - Asynchronous interactions could

lead to data race conditions

- If the application has large
number of parallel tasks, it is
difficult to achieve good load
balancing

END

ECE 677 Salim Hariri/University of Arizona

Computational Models: Data Model

Partitioned Shared Data

/s
() ()

(=) (v

Large number of problems
can be solved using this
model

It is easier to develop
applications

Amount of parallelism in
functional parallelism is
fixed

Amount of parallelism in
data parallelism scales with
the data size

Generally speaking,
efficient distributed
applications should exploit
both types of parallelism

ECE 677 Salim Hariri/University of Arizona

Communications Models

Message passing model

Messages are used to exchange information between local and remote
processes as well as between processes and the operating system

Application developers need to explicitly involved in writing the
communication and synchronization routines

Users use two basic communications primitives: SEND and RECEIVE

SEND and RECEIVE primitives have different implementations depending
on whether or not they are blocking or Nonblocking, synchronous or asynchronous.

The main limitations are:
* synchronizing request and response messages
* handle data representations
* machine addresses

* handle system failures that could be related to communications network
or compute failures

* debugging and testing is difficult

ECE 677 Salim Hariri/University of Arizona

Distributed Shared Memory

In message passing model, the

communication between processes is ‘
hlghly contro.llgd by a prqtocol and Sl
involves explicit cooperation between

/

processes
Direct shared memory

communication is not explicitly
controlled and requires the use of a
global shared memory

Message communication resembles

the operation of postal service in
sending and receiving mail

The shared memory scheme can also
be compared to a bulletin board,
found in a grocery store or
supermarket; it is a central repository
for existing information that can be
read or updated by anyone

ECE 677 Salim Hariri/University of Arizona

Distributed Computing Programming Paradigms

= Distributed Computing Models
= What is Parallelism
= Parallel Computing Models and Architectures
« Data Parallel Model
« Functional Parallel Model

= Distributed Communication Models
= Shared Memory, Distributed SM
= Message Passing Model

= Steps for Creating a Parallel/Distributed Program
= Design and Performance Considerations

= Message Passing Interface (MPI)

= Running MPI Programs and Examples

ECE 677 Salim Hariri/University of Arizona

Distributed Programming Paradigms: What is
Parallelism?

A strategy for performing large, complex tasks faster.

A large task can either be performed serially, one step
following another, or can be decomposed into smaller
tasks to be performed simultaneously, i.e., in parallel.

Parallelism is done by:
= Breaking up the task into smaller tasks

= Assigning the smaller tasks to multiple workers to work on
simultaneously

=« Coordinating the workers

Parallel problem solving is common. Examples: building
construction; operating a large organization; automobile
manufacturing plant

ECE 677 Salim Hariri/University of Arizona

Distributed/Parallel Programming Paradigm

= Parallel programming involves:
= Decomposing an algorithm or data into parts

= Distributing the parts as tasks which are worked
on by multiple processors simultaneously

= Coordinating work and communications of those
Processors

= Parallel/Distributed programming
considerations:
= Type of parallel model being used
= Type of communication model being used

ECE 677 Salim Hariri/University of Arizona

Steps for Writing a Parallel/Distributed Programs

If you are starting with an existing serial program, debug the serial code completely

Identify the parts of the program that can be executed concurrently:
= Requires a thorough understanding of the algorithm
= Exploit any inherent parallelism which may exist.
= May require restructuring of the program and/or algorithm. May require an entirely new
algorithm.
Decompose the program:
= Functional Parallelism
=« Data Parallelism
= Combination of both
Code development
= Code may be influenced/determined by machine architecture
« Choose a programming paradigm
= Determine communication
= Add code to accomplish task control and communications
Compile, Test, Debug
Optimization
= Measure Performance
= Locate Problem Areas
= Improve them

ECE 677 Salim Hariri/University of Arizona

Distributed Computing Models: Functional
Parallel Model

Functional Decomposition

® Functional Decomposition
(Functional Parallelism)
e Decomposing the
problem into different
tasks which can be machine |
distributed to multiple -
processors for
simultaneous execution

machine 3

machine 4

machine|2

\

e Good to use when there
IS not static structure or
fixed determination of

number of calculations to
be performed

ECE 677 Salim Hariri/University of Arizona

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/function.decomp.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/function.decomp.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/function.decomp.gif

Domain Decomposition (Data Parallelism)

» Partitioning the problem's data domain and distributing
portions to multiple processors for simultaneous
execution
« Good to use for problems where:
» data is static (factoring and solving large matrix or
finite difference calculations)
« dynamic data structure tied to single entity where
entity can be subsetted (large multi-body problems)
« domain is fixed but computation within various
regions of the domain is dynamic (fluid vortices
models)

ECE 677 Salim Hariri/University of Arizona

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/domain.decomp.gif

Domain Decomposition (Data Parallelism)

Domain Decomposition

machine 1

machine, 2

machine 3

machine 4

ECE 677

Salim Hariri/University of Arizona

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/domain.decomp.gif

There are many ways to decompose data into
partitions to be distributed

= One Dimensional Data Distribution
« Block Distribution
» Cyclic Distribution

= |TWO Dimensional Data Distribution
« Block Block Distribution

= Block Cyclic Distribution
= Cyclic Block Distribution

ECE 677 Salim Hariri/University of Arizona

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/1d.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/1dblock.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/1dcyclic.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/2d.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/2dbb.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/2dbc.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/2dcb.gif

. . Block Distribution of A
One-dimensional Array A

Cyclic Distribution of A

ECE 677 Salim Hariri/University of Arizona

Two-dimensional Array B
Block Block Distribution of B

Block Cyclic Distribution of B Cyclic Block Distribution of B

ECE 677 Salim Hariri/University of Arizona

Distributed Communication Models

= Shared Memory
= Message Passing

ECE 677 Salim Hariri/University of Arizona

Memory Architectures

= The way processors communicate is
dependent upon memory architecture,
which, in turn, will affect how you write
your parallel program

= The primary memory architectures are:
= Shared Memory
= Distributed Memory

ECE 677 Salim Hariri/University of Arizona

Shared Memory

Shared Memory

= Multiple processors operate
independently but share the same memory
resources

= Only one processor can access the
shared memory location at a time

= Synchronization achieved by controlling tasks' reading from and
writing to the shared memory
= Advantages
= Easy for user to use efficiently
= Data sharing among tasks is fast (speed of memory access)
= Disadvantages

= Memory is bandwidth limited. Increase of processors without increase of
bandwidth can cause severe bottlenecks

= User is responsible for specifying synchronization, e.g., locks

ECE 677 Salim Hariri/University of Arizona

Distributed Memory

Multiple processors operate
independently but each has its own
private memory
Data is shared across
a communications network using message |E——_g
passing
User responsible for synchronization
using message passing
Advantages
Memory scalable to nhumber of processors. Increase number of
processors, size of memory and bandwidth increases.
Each processor can rapidly access its own memory without
interference
Disadvantages
Difficult to map existing data structures to this memory organization
User responsible for sending and receiving data among processors
To minimize overhead and latency, data should be blocked up in large
chunks and shipped before receiving node needs it

ECE 677 Salim Hariri/University of Arizona

Memory / Processor Arrangements

= Distributed Memory
= MPP - Massively Parallel Processor

= Shared Memory

= SMP - Symmetric Multiprocessor
= Identical processors
= Equal access to memory
= Sometimes called UMA - Uniform Memory Access
= or CC-UMA - Cache Coherent UMA

= Cache coherent means if one processor updates a location in shared
memory, all the other processors know about the update

= NUMA - Non-Uniform Memory Access
= Sometimes called CC-NUMA - Cache Coherent NUMA
= Often made by linking two or more SMPs
= One SMP can directly access memory of another SMP
= Not all processors have equal access time to all memories
= Memory access across link is slower

ECE 677 Salim Hariri/University of Arizona

Memory / Processor Arrangements

= Combinations

= Multiple SMPs connected by a network
= Processors within an SMP communicate via memory
= Requires message passing between SMPs
= One SMP can't directly access the memory of another SMP
= Multiple distributed memory processors connected to a larger
shared memory

= Small fast memory can be used for supplying data to processors and
large slower memory can be used for a backfill to the smaller memories

= Similar to register <= cache memory <= main memory hierarchy

= Transfer from local memory to shared memory would be transparent to
the user

= Probable design of the future with several processors and their local
memory surrounding a larger shared memory on a single board

ECE 677 Salim Hariri/University of Arizona

Communication Models: Message Passing

= The message passing model is defined as:
= Set of processes using only local memory

= processes communicate by sending and receiving
messages

= data transfer requires cooperative operations to be
performed by each process (a send operation must have
a matching receive)

= Programming with message passing is done by linking
with and making calls to libraries which manage the data
exchange between processors. Message passing libraries
are available for most modern programming languages.

ECE 677 Salim Hariri/University of Arizona

Message Passing: Message Passing Interface (MPI)

= Standard portable message-passing library definition developed in
1993 by a group of parallel computer vendors, software writers,
and application scientists.

= Available to both Fortran and C programs.

= Available on a wide variety of parallel machines.

= Target platform is a distributed memory system such as the SP.
= All inter-task communication is by message passing.

All parallelism is explicit: the programmer is responsible for
parallelism the program and implementing the MPI constructs.

Programming model is SPMD (Single Program Multiple Data)

ECE 677 Salim Hariri/University of Arizona

Communication Primitives

= Communications on distributed memory computers:
= Point to Point
= One to All Broadcast
= All to All Broadcast
= One to All Personalized
= All to All Personalized
= Shifts
= Collective Computation

ECE 677 Salim Hariri/University of Arizona

Point to Point

The most basic method of
communication between two
processors is the point to point
message. The originating processor
"sends" the message to the
destination processor. The destination
processor then "receives" the
message.

The message commonly includes the
information, the length of the
message, the destination address and
possibly a tag.

Typical message passing libraries
subdivide the basic sends and
receives into two types:

blocking - processing waits until
message is transmitted

nonblocking - processing continues
even if message hasn't been
transmitted yet

ECE 677 Salim Hariri/University of Arizona

Processor A

memory

send(data)

hetwork

Basic Message Passing

Processor B

memory

receive(data)

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/basic_msg.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/basic_msg.gif

One to All Broadcast

= A node may have

information which all
the others require. A
broadcast is a message
sent to many other
nodes.

A One to All broadcast
occurs when one
processor sends the
same information to
many other nodes.

ECE 677

PO

P1

P2

P3

broadcast

-

Salim Hariri/University of Arizona

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/broadcast.gif

All to All Broadcast

= With an All to
All broadcast
each
processor
sends its
unique
information to
all the other
Processors.

ECE 677

PO

P1

P2

P3

Al

Al

A2

A3

B0

Bl

B2

B3

Co

C1

C2

C3

DO

D1

D2

D3

All to All

_>

Salim Hariri/University of Arizona

Al

B0

Co

DO

Al

Bl

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/all2all.gif

Shifts

= Shifts are permutations of information. Information is
exchanged in one logical direction or the other. Each
processor exchanges the same amount of information
with its neighbor processor.

= There are two types of shifts:

« Circular - Each processor exchanges information with its logical
neighbor. When there is no longer a neighbor due to an edge of
data the shift "wraps around" and takes the information from the
opposite edge.

=« End Off Shift - When an edge occurs, the processor is padded
with zero or a user defined value.

ECE 677 Salim Hariri/University of Arizona

Collective Computation

= In collective computation (reductions), one
member of the group collects data from
the other members. Commonly a
mathematical operation like

= Min, max, add, multiple etc.

ECE 677 Salim Hariri/University of Arizona

Designh and Performance Considerations

= Amdahl's Law states that potential program speedup is
defined by the fraction of code (P) which can be

parallelized:
= speedup=1/(1-P)
= If none of the code can be parallelized, p= 0 and the speedup = 1 (nho
speedup). If all of the code is parallelized, p = 1 and the speedup is infinite

(in theory). If 50% of the code can be parallelized, maximum speedup = 2,
meaning the code will run twice as fast.

= Introducing the number of processors performing the parallel fraction of
work, the relationship can be modeled by:

= speedup =1/ (P/N +S)

= where P = parallel fraction, N = number of processors and S = serial
fraction.

ECE 677 Salim Hariri/University of Arizona

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/amdahl1.gif

Scalability of the Problem

It soon becomes obvious that there are limits to the scalability of
parallelism.

For example, at P = .50, .90 and .99 (50%, 90% and 99% of the
code is parallelizable):

Speedup
N P = .50 P = .90 P= .99
10 1.82 5.26 9.17
100 1.98 9.17 50.25
1000 1.99 9.91 90.99
10000 1.99 9.91 99.02

ECE 677 Salim Hariri/University of Arizona

Scalable Problems

= However, certain problems demonstrate increased
performance by increasing the problem size. For example:
= 2D Grid Calculations 85 seconds 85%
= Serial fraction 15 seconds 15%

= We can increase the problem size by halving both the grid
points and the time step, which is directly proportional to
the grid spacing. This results in four times the number of
grid points (factor of two in each direction) and twice the
number of time steps. The timings then look like:
= 2D Grid Calculations 680 seconds 97.84%
= Serial fraction 15 seconds 2.16%

= Problems which increase the percentage of parallel time
with their size are more "scalable" than problems with a
fixed percentage of parallel time.

ECE 677 Salim Hariri/University of Arizona

Communication Patterns and Bandwidth

= For some problems, increasing the number of processors
will:
= Decrease the execution time attributable to computation
= But also, increase the execution time attributable to communication

= The time required for communication is dependent upon a
given system's communication bandwidth parameters.

= For example, the time (t) required to send W words
between any two processors is:

t=L+W/B

where L = latency and B = hardware bitstream rate in words
per second.

= Latency can be thought of as the time required to send a
zero byte message

ECE 677 Salim Hariri/University of Arizona

Communication Patterns and Bandwidth

= Communication patterns also affect the
computation to communication ratio.

= For example, gather-scatter
communications between a single processor
and N other processors will be impacted
more by an increase in latency than N
processors communicating only with
nearest neighbors.

ECE 677 Salim Hariri/University of Arizona

I/0 Patterns

I/O operations are generally regarded as inhibitors to
parallelism

Parallel I/O systems are as yet, largely undefined and not
available

In an environment where all processors see the same
filespace, write operations will result in file overwriting

Read operations will be affected by the fileserver's ability
to handle multiple read requests at the same time

I/O which must be conducted over the network (non-local)
can cause severe bottlenecks

ECE 677 Salim Hariri/University of Arizona

Improving I/O Performance

= Reduce overall I/O as much as possible

= Confine I/O to specific serial portions of the job

= For example, Task 1 could read an input file and then
communicate required data to other tasks. Likewise, Task 1
could perform write operation after receiving required data from
all other tasks.

= Create unique filenames for each tasks'
input/output file(s)

For distributed memory systems with shared
filespace, perform I/O in local, non-shared

filespace

= For example, each processor may have /tmp filespace which
can used. This is usually much more efficient than performing
I/O over the network to one's home directory.

ECE 677 Salim Hariri/University of Arizona

Principles of Parallel Algorithm Design

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Addison Wesley, 2003.

Chapter Overview: Algorithms and Concurrency

* Introduction to Parallel Algorithms
— Tasks and Decomposition
— Processes and Mapping
— Processes Versus Processors
« Decomposition Techniques
— Recursive Decomposition
— Recursive Decomposition
— Exploratory Decomposition
— Hybrid Decomposition
« Characteristics of Tasks and Interactions

— Task Generation, Granularity, and Context

— Characteristics of Task Interactions.

Chapter Overview: Concurrency and Mapping

« Mapping Techniques for Load Balancing

— Static and Dynamic Mapping
* Methods for Minimizing Interaction Overheads

— Maximizing Data Locality

— Minimizing Contention and Hot-Spots

— Overlapping Communication and Computations

— Replication vs. Communication

— Group Communications vs. Point-to-Point Communication
« Parallel Algorithm Design Models

— Data-Parallel, Work-Pool, Task Graph, Master-Slave, Pipeline, and
Hybrid Models

Preliminaries: Decomposition, Tasks, and
Dependency Graphs

The first step in developing a parallel algorithm is to decompose the
problem into tasks that can be executed concurrently

A given problem may be docomposed into tasks in many different
ways.

Tasks may be of same, different, or even interminate sizes.

A decomposition can be illustrated in the form of a directed graph
with nodes corresponding to tasks and edges indicating that the

result of one task is required for processing the next. Such a graph
Is called a task dependency graph.

Example: Multiplying a Dense Matrix with a Vector
A b y

01 n

Task 1

n-1
Taskn

Computation of each element of output vector y is independent of other
elements. Based on this, a dense matrix-vector product can be decomposed
into n tasks. The figure highlights the portion of the matrix and vector accessed
by Task 1.

HEEEEEEEEEEN

Observations: While tasks share data (namely, the vector b), they do
not have any control dependencies - i.e., no task needs to wait for the
(partial) completion of any other. All tasks are of the same size in terms
of number of operations. Is this the maximum number of tasks we could
decompose this problem into?

Example: Database Query Processing

Consider the execution of the query:

MODEL = ""CIVIC" AND YEAR = 2001 AND

(COLOR = "GREEN" OR COLOR = "WHITE)

on the following database:

ID# Model Year Color Dealer Price

4523 Civic 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18,000
6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22,000
8354 Accord 2000 Green VT $18,000
4395 Civic 2001 Red CA $17,000
7352 Civic 2002 Red WA $18,000

Example: Database Query Processing

The execution of the query can be divided into subtasks in various
ways. Each task can be thought of as generating an intermediate
table of entries that satisfy a particular clause.

ID# | Year
ID# | Model ID# | Color
7623 2001
4523 | Civic 6734 | 2001 ID# | Color | | 7623 | Green
6734 | Civic 5342 2001 9834 | Green
4395 | Civic 3845 | 2001 3476 | White | | 5342 | Green
7352 | Civie 4395 | 2001 6734 | White | | 8354 | Green

ID# | Color

ID# | Model | Year 3476 | White

L . 7623 | Green
34| cvie | 2001] (_ Civic AND 2001 (White OR Green)~ |7623 | Green

4395 | Civic | 2001 6734 | White
5342 | Green
8354 | Green

(cCivic AND 2001 AND (White OR Green))

ID# | Model | Year| Color
6734 | Civic | 2001 | White

Decomposing the given query into a number of tasks.
Edges in this graph denote that the output of one task
IS needed to accomplish the next.

Example: Database Query Processing

Note that the same problem can be decomposed into subtasks in other
ways as well.

ID# Year
ID# | Model ID# | Color
4523 Civi 7823 2001 7623 | Gr
ivie 6734 | 2001 ID# | Color een
6734 Civic 5342 2001 9834 | Green
4395 Civic 3845 2001 3476 | White 5342 | Green
7352 Civic 4395 2001 6734 ‘White 8354 Green

(cwie) 2001
ID# | Color
White OR Green 3476 | White

7623 Green
9834 Green
6734 | White
5342 | Green
8354 | Green

(2001 AND (White or Green)) [ID# | Color | Year

7623 Green | 2001
6734 | White | 2001
5342 | Green | 2001

(__ civic AND 2001 AND (White OR Green))

ID# | Model | Year| Color
6734 Civic 2001 | White

An alternate decomposition of the given problem into
subtasks, along with their data dependencies.

Different task decompositions may lead to significant differences with

respect to their eventual parallel performance.

Granularity of Task Decompositions

 The number of tasks into which a problem is decomposed
determines its granularity.

« Decomposition into a large number of tasks results in fine-grained
decomposition and that into a small number of tasks results in a
coarse grained decomposition.

A
01 n

o'
«

Task 1

Task 2

Task 3

Task 4

A coarse grained counterpart to the dense matrix-vector product
example. Each task in this example corresponds to the computation of three
elements of the result vector.

Degree of Concurrency

The number of tasks that can be executed in parallel is the degree
of concurrency of a decomposition.

Since the number of tasks that can be executed in parallel may
change over program execution, the maximum degree of
concurrency is the maximum number of such tasks at any point
during execution. What is the maximum degree of concurrency of
the database query examples?

The average degree of concurrency is the average number of tasks
that can be processed in parallel over the execution of the program.
Assuming that each tasks in the database example takes identical
processing time, what is the average degree of concurrency in each
decomposition?

The degree of concurrency increases as the decomposition
becomes finer in granularity and vice versa.

Critical Path Length

A directed path in the task dependency graph represents a
sequence of tasks that must be processed one after the other.

The longest such path determines the shortest time in which the
program can be executed in parallel.

The length of the longest path in a task dependency graph is called
the critical path length.

Critical Path Length

Consider the task dependency graphs of the two database query
decompositions:

Task 4 Task 3 Task 2 Task 1 Task 4 Task 3 Task 2 Task 1

(a) (b)

What are the critical path lengths for the two task dependency graphs?
If each task takes 10 time units, what is the shortest parallel execution time
for each decomposition? How many processors are needed in each case to
achieve this minimum parallel execution time? What is the maximum

degree of concurrency?

Limits on Parallel Performance

» |t would appear that the parallel time can be made arbitrarily small
by making the decomposition finer in granularity.

 There is an inherent bound on how fine the granularity of a
computation can be. For example, in the case of multiplying a dense
matrix with a vector, there can be no more than (n?) concurrent
tasks.

« Concurrent tasks may also have to exchange data with other tasks.
This results in communication overhead. The tradeoff between the
granularity of a decomposition and associated overheads often
determines performance bounds.

Task Interaction Graphs

Subtasks generally exchange data with others in a decomposition.
For example, even in the trivial decomposition of the dense matrix-
vector product, if the vector is not replicated across all tasks, they
will have to communicate elements of the vector.

The graph of tasks (nodes) and their interactions/data exchange
(edges) is referred to as a task interaction graph.

Note that task interaction graphs represent data dependencies,
whereas task dependency graphs represent control dependencies.

Task Interaction Graphs: An Example

Consider the problem of multiplying a sparse matrix A with a
vector b. The following observations can be made:

As before, the computation of each element of the result vector can be
viewed as an independent task.

Unlike a dense matrix-vector product though, only non-zero elements of
matrix A participate in the computation.

If, for memory optimality, we also partition b across tasks, then one can see
that the task interaction graph of the computation is identical to the graph of
the matrix A (the graph for which A represents the adjacency structure).

o

0
Task 0 [g
e

e
000 ee
@

o0 066 v
®e
L0000 00

oe
oo

Task 11

~~
o
~
G
~

Task Interaction Graphs, Granularity, and
Communication

In general, if the granularity of a decomposition is finer, the
associated overhead (as a ratio of useful work assocaited with a
task) increases.

Example: Consider the sparse matrix-vector product example from
previous foil. Assume that each node takes unit time to process and
each interaction (edge) causes an overhead of a unit time.

Viewing node 0 as an independent task involves a useful
computation of one time unit and overhead (communication) of three
time units.

Now, if we consider nodes O, 4, and 5 as one task, then the
task has useful computation totaling to three time units and
communication corresponding to four time units (four edges).
Clearly, this is a more favorable ratio than the former case.

Processes and Mapping

In general, the number of tasks in a decomposition exceeds the
number of processing elements available.

For this reason, a parallel algorithm must also provide a mapping of
tasks to processes.

Note: We refer to the mapping as being from tasks to processes, as
opposed to processors. This is because typical programming APIs, as we
shall see, do not allow easy binding of tasks to physical processors. Rather,
we aggregate tasks into processes and rely on the system to map these
processes to physical processors. We use processes, not in the UNIX sense
of a process, rather, simply as a collection of tasks and associated data.

Processes and Mapping

Appropriate mapping of tasks to processes is critical to the parallel
performance of an algorithm.

Mappings are determined by both the task dependency and task
Interaction graphs.

Task dependency graphs can be used to ensure that work is equally
spread across all processes at any point (minimum idling and
optimal load balance).

Task interaction graphs can be used to make sure that processes
need minimum interaction with other processes (minimum
communication).

Processes and Mapping
An appropriate mapping must minimize parallel execution time by:
« Mapping independent tasks to different processes.

« Assigning tasks on critical path to processes as soon as they
become available.

* Minimizing interaction between processes by mapping tasks with
dense interactions to the same process.

Note: These criteria often conflict eith each other. For example, a
decomposition into one task (or no decomposition at all) minimizes
Interaction but does not result in a speedup at all! Can you think of
other such conflicting cases?

Processes and Mapping: Example

Task 4 Task 3 Task 2 Task 1 Task 4 Task 3 Task 2 Task 1

(@) (b)

Mapping tasks in the database query decomposition to
processes. These mappings were arrived at by viewing the
dependency graph in terms of levels (no two nodes in a level have
dependencies). Tasks within a single level are then assigned to
different processes.

Decomposition Techniques

So how does one decompose a task into various subtasks?

While there is no single recipe that works for all problems, we
present a set of commonly used techniques that apply to broad
classes of problems. These include:

recursive decomposition
data decomposition
exploratory decomposition
speculative decomposition

Recursive Decomposition

Generally suited to problems that are solved using the divide-and-
conquer strategy.

A given problem is first decomposed into a set of sub-problems.

These sub-problems are recursively decomposed further until a
desired granularity is reached.

Recursive Decomposition: Example

A classic example of a divide-and-conquer algorithm on which we
can apply recursive decomposition is Quicksort.

|5 /1211 1]10| 6|8 |3|7]4] 0] 2]

l1]3]a]2] | 5|12]11]10/ 6] 8| 7| 9|
[1]2] [2]4] |s5l6|8|7] L9 [12]11]10]
4] sle] [7]s] [o] [10]12[11]
5| le] 7] [s] [10] [11]12]

In this example, once the list has been partitioned around the pivot, each
sublist can be processed concurrently (i.e., each sublist represents an
independent subtask). This can be repeated recursively.

Recursive Decomposition: Example

The problem of finding the minimum number in a given list (or
indeed any other associative operation such as sum, AND, etc.) can
be fashioned as a divide-and-conquer algorithm. The following
algorithm illustrates this.

We first start with a simple serial loop for computing the
minimum entry in a given list:

. procedure SERIAL_MIN (A, n)

. begin

. min = A[0];

fori:=1ton-1do

If (A[i] < min) min := AJi];
. endfor;

. return min;

.end SERIAL_MIN

©~NOoUAWNR

Recursive Decomposition: Example

We can rewrite the loop as follows:

1. procedure RECURSIVE_MIN (A, n)
2. begin

3.1f(n=1)then

4. min:=A]0] ;

5. else

6. Imin:= RECURSIVE_MIN (A, n/2);

7. rmin = RECURSIVE_MIN (&(A[n/2]),n -n/2);
8. If (Imin <rmin) then
9.

1

min := Imin;
0. else
11. min ;= rmin;
12. endelse;
13. endelse;

14. return min;
15. end RECURSIVE_MIN

Recursive Decomposition: Example

The code in the previous foil can be decomposed naturally using a
recursive decomposition strategy. We illustrate this with the
following example of finding the minimum number in the set {4, 9, 1,
7, 8, 11, 2, 12}. The task dependency graph associated with this
computation is as follows:

min(1,2)

min(4,1) min(8,2)

N N

min(4,9) min(1,7) min(8,11) min(2,12)

Data Decomposition

|dentify the data on which computations are performed.
Partition this data across various tasks.
This partitioning induces a decomposition of the problem.

Data can be partitioned in various ways - this critically impacts
performance of a parallel algorithm.

Data Decomposition: Output Data Decomposition

Often, each element of the output can be computed independently
of others (but simply as a function of the input).

A partition of the output across tasks decomposes the problem
naturally.

Output Data Decomposition: Example

Consider the problem of multiplying two n x n matrices A and B to
yield matrix C. The output matrix C can be partitioned into four tasks
as follows:

Al,l ALQ Bljl Bl,? N Cl,l 0112
A2,1 AQ,Q . BQ,l BQ,Q 02,1 02,2
Taskl: Cy; = A11B11+ A12B5;
Task2: Cy5=A11B12+ A12B25

Task3: Cyq = Ag1B11+ Az2Bs 1
Task 4: 02,2 — AQ}lBle + AQ,QBQ,Q

Output Data Decomposition: Example

A partitioning of output data does not result in a unique decomposition into
tasks. For example, for the same problem as in previus foil, with identical
output data distribution, we can derive the following two (other)

decompositions:
Decomposition |

Decomposition |l

Task1: C,;, =A,, By,
Task2: C;,=C;; +A,,B,,
Task3: C;,=A;, B,
Task4: C,,=C,,+A,,B,,
Task 5: C,, = A, By,
Task 6: C,,=C,; +A,,B;,
Task7: C,,=A,, B,
Task8: C,,=C,,+A,,B,,

Task1: C;; =A, By,
Task2: C,,=C,; +A,,B,,
Task3: C,,=A;,B,,
Task4: C,,=C,,+A,, B,
Task5: C,; =A,,B,,
Task6: C,,=C,; +A,, B,
Task 7: C,,=A,, B,
Task8: C,,=C,,+A,,B,,

Output Data Decomposition: Example

Consider the problem of counting the instances of given itemsets in a
database of transactions. In this case, the output (itemset frequencies) can
be partitioned across tasks.

(a) Transactions (input), itemsets (input), and frequencies (output)

A,B,C,E, G H A,B,C 1
. BDERKL D,E >3
5 ABFEHL , GFG §0
g D,E,F,H T AE g 2
S FEGHK, § co = 1
E AEFKL T DK %2
§ B,C,D,G HL B,C,F =9
5 GHL C,D, K 0

D,E,F,K,L

F,G,HL

(b) Partitioning the frequencies (and itemsets) among the tasks

>
ABCEGH ABC g1 ABCEGH CD g1
et m et

B,D,E,F.K,L S DE 23 B,D,E,F,K,L 8 DK 3 2
[72] () [[
§ ABFEHL § cro c 0 § ABFEHL § B.CF £ 0
S D,EF,H AE 2 2 S D,EFH C,D,K 2 0
2 £ g =
E F’ G, H’ K’ g E F’ G’ H’ K’ g
'_
s AEFRKL E AETFKL
§ B,C,D,G,H,L % B,C,D,G,H,L
& GHL 8 GHL

D,E,FK,L D,E,FKL

F,G,H L F,G,H, L

task 1 task 2

Output Data Decomposition: Example

From the previous example, the following observations can be
made:

If the database of transactions is replicated across the processes,
each task can be independently accomplished with no
communication.

If the database is partitioned across processes as well (for reasons
of memory utilization), each task first computes partial counts.
These counts are then aggregated at the appropriate task.

Input Data Partitioning

» Generally applicable if each output can be naturally computed as a
function of the input.

* In many cases, this is the only natural decomposition because the
output is not clearly known a-priori (e.g., the problem of finding the
minimum in a list, sorting a given list, etc.).

« Atask is associated with each input data partition. The task
performs as much of the computation with its part of the data.
Subseqguent processing combines these partial results.

Input Data Partitioning: Example

In the database counting example, the input (i.e., the transaction
set) can be partitioned. This induces a task decomposition in which
each task generates partial counts for all itemsets. These are
combined subsequently for aggregate counts.

Partitioning the transactions among the tasks

[72) [72)
& AB,CEGH A,B,C 1 5 A,B,C 0
S B,D,E,F,KL D.E Z 2 o D.E > 1
2 = 2 c
& ABFHL C,F.G g o © CF G 2 0
- 2 4 [2 8
o D,EFH © AE 2 o AEFKL ® AE o
] = L 7] £ (T
8 FGHK g CD go| |8 BCDGHL g CD B 1
kS D,K E1| |8 GHL D,X £
B,C,F B 0 D,E,F,K,L B,C,F - 0
C,D,K 0 F,G,H,L C,D,K 0

task 1 task 2

Partitioning Input and Output Data

Often input and output data decomposition can be combined for a
higher degree of concurrency. For the itemset counting example, the
transaction set (input) and itemset counts (output) can both be
decomposed as follows:

Partitioning both transactions and frequencies among the tasks

(2] [}
§ A,B,CEGH A,B,C 1 § ABCEGH
g B.D,E,FKL D,E T 2 8§ B.D.EFKL &
< [=
8§ ABFHL C,F, G L o0 § ABFHL L
— £ g — 2 g
o D,EFH o AE (I | o D,EF,H o 2
177} e L 171 g L
£ FEGHK S b 8 FGIHK, & GCD B o
= 5 s D, K § 1
B,C,F 0
C.D.K 0
task 1 task 2
o o
S A, B, C 0| |'s
g > 8 &
8 C.F, G L o S S
— £ k54 — © g
P A E,F, K, L o AE 21 @ AEFKL Q 2
2 B,C,D,G,H, L E 3 & B,CD,GHL E C,D 3 1
8 GHL 5 % GHL D,K § 1
D.E,F,K,L - D.E,F,K,L B.C,F 0
F,G, H,L F.G,H,L C,D,K 0

task 3 task 4

Intermediate Data Partitioning

Computation can often be viewed as a sequence of transformation
from the input to the output data.

In these cases, it is often beneficial to use one of the intermediate
stages as a basis for decomposition.

Intermediate Data Partitioning: Example

Let us revisit the example of dense matrix multiplication. We first
show how we can visualize this computation in terms of
iIntermediate matrices D.

e))
1,1 B1,1 | Bip Diii | Diag
. —_—
A
2,1 Dsy I)1,22
|
AL
1,2 Doyq| Do
® —_—
A))
2,2 B21 | B2 Dyon | Do
C11| C1,2

Intermediate Data Partitioning: Example

A decomposition of intermediate data structure leads to the following
decomposition into 8 + 4 tasks:

Stage |
D1,1,1 D1,1,2
A1,1 A1,2 B1,1 31,2 . D1,2,2 D1,2,2
A2,1 A2,2 ' 32,1 32,2 D2,1,1 2,1,2
2,2,2 2,2,2
Stage |l
D1,1,1 1,1,2 2,1,1 2,1,2 Cl,l Ci2
D1,2,2 D1,2,2 D2,2,2 D2,2,2 C'2,1 02,2
Task 03: Dy;,=A;,B,, Task 04: D,,,=A;,B,,
Task 05: D, ,,=A,, B, Task 06: D,,,=A,,B,,

Intermediate Data Partitioning: Example

The task dependency graph for the decomposition (shown in
previous foil) into 12 tasks is as follows:

The Owner Computes Rule

« The Owner Computes Rule generally states that the process
assined a particular data item is responsible for all computation
associated with it.

* Inthe case of input data decomposition, the owner computes rule
imples that all computations that use the input data are performed
by the process.

* |In the case of output data decomposition, the owner computes rule
implies that the output is computed by the process to which the
output data is assigned.

Exploratory Decomposition

 In many cases, the decomposition of the problem goes hand-in-
hand with its execution.

 These problems typically involve the exploration (search) of a state
space of solutions.

 Problems in this class include a variety of discrete optimization
problems (0/1 integer programming, QAP, etc.), theorem proving,
game playing, etc.

Exploratory Decomposition: Example

A simple application of exploratory decomposition is in the solution
to a 15 puzzle (a tile puzzle). We show a sequence of three moves
that transform a given initial state (a) to desired final state (d).

12|34 1/2]3|4 12|34 112[3|4
5/6|04|8 5/6|7]8 5/6|7]8 5167
I
9 10| 7|11 9 10| <ril 9 110|11] 9 10]11]12
I
13| 14| 15|12 13| 14|15] 12 13|14 15|12 13| 14] 15
(a) (b) (c) (d)

Of-course, the problem of computing the solution, in general, is
much more difficult than in this simple example.

Exploratory Decomposition: Example

The state space can be explored by generating various successor
states of the current state and to view them as independent tasks.

oo v |~
SEEE
o N w
SEEE
task 1 task 2 task 3 task 4
C-BEE I C-B R o |0 |wn |- o | [wn =
NS N <N - I N SN
SN |w G| w OSSN |w Q=N e
0= (e | > 02| [~ D= ||~ I~ o | &
Do |wn| =] Qo wn|=| |G |0 |n|= oo v =] |5 |e|wn o |wn=]5 e - Qle|wni=][Tle|wnl=]| |5 W= S (@ = e R R N A e - VR o B el K- RV
== - - = = - = = = —_ —_ —_ - | = == = =
NS SN R[N lalan| ([R5 =2 N R S N Sl N| R o N |RjoanN]|R(B|a]|N clalan| (Rig|en(Nv| R3] |N
—- - - — — — — - - —
s N|w | (RGN |w||IR|G|N|w 7y N (WG (N|w AN w5 (N w Sl |N|w||&5|s Wl Gle|N|w| & N (W Am (N (w | G2 N|w]| & N (W
Slo|e (s~ R |D|ee |+~ e |~ Dol |+| RS+ [R|= L EIcE- -~ Slole (] B2 SRS e |&] [R]2 (e |+~ SRR RIS LRSI RN

Speculative Decomposition

In some applications, dependencies between tasks are not known a-
priori.

For such applications, it is impossible to identify independent tasks.
There are generally two approaches to dealing with such
applications: conservative approaches, which identify independent
tasks only when they are guaranteed to not have dependencies,

and, optimistic approaches, which schedule tasks even when they
may potentially be erroneous.

Conservative approaches may yield little concurrency and optimistic
approaches may require roll-back mechanism in the case of an
error.

Speculative Decomposition: Example

A classic example of speculative decomposition is in discrete event
simulation.

The central data structure in a discrete event simulation is a time-
ordered event list.

Events are extracted precisely in time order, processed, and if
required, resulting events are inserted back into the event list.

Consider your day today as a discrete event system - you get up,
get ready, drive to work, work, eat lunch, work some more, drive
back, eat dinner, and sleep.

Each of these events may be processed independently, however, in
driving to work, you might meet with an unfortunate accident and not
get to work at all.

Therefore, an optimistic scheduling of other events will have to be
rolled back.

Speculative Decomposition: Example

Another example is the simulation of a network of nodes (for
Instance, an assembly line or a computer network through which
packets pass). The task is to simulate the behavior of this network
for various inputs and node delay parameters (note that networks
may become unstable for certain values of service rates, queue
sizes, etc.).

C

o
£ ——{ a D 5
Q. =
< =
=
§ E G 1 —— ©
5 5
w B +
™ F H @

7 L

System Components”

Hybrid Decompositions

Often, a mix of decomposition techniques is necessary for
decomposing a problem. Consider the following examples:

In quicksort, recursive decomposition alone limits concurrency (Why?). A
mix of data and recursive decompositions is more desirable.

In discrete event simulation, there might be concurrency in task processing.
A mix of speculative decomposition and data decomposition may work well.

Even for simple problems like finding a minimum of a list of numbers, a mix
of data and recursive decomposition works well.

37 (219 11 4 5 8 7 10| 6/ 13 11 193 9]c?ei[zmposition
2 1 Recursive

decomposition

Characteristics of Tasks

Once a problem has been decomposed into independent tasks, the
characteristics of these tasks critically impact choice and
performance of parallel algorithms. Relevant task characteristics
include:

« Task generation.
« Task sizes.
* Size of data associated with tasks.

Task Generation

Static task generation: Concurrent tasks can be identified a-priori.
Typical matrix operations, graph algorithms, image processing
applications, and other regularly structured problems fall in this
class. These can typically be decomposed using data or recursive
decomposition techniques.

Dynamic task generation: Tasks are generated as we perform
computation. A classic example of this is in game playing - each 15
puzzle board is generated from the previous one. These applications
are typically decomposed using exploratory or speculative
decompositions.

Task Sizes

Task sizes may be uniform (i.e., all tasks are the same size) or non-
uniform.

Non-uniform task sizes may be such that they can be determined (or
estimated) a-priori or not.

Examples in this class include discrete optimization problems, in
which it is difficult to estimate the effective size of a state space.

Size of Data Associated with Tasks

* The size of data associated with a task may be small or large when
viewed in the context of the size of the task.

« A small context of a task implies that an algorithm can easily
communicate this task to other processes dynamically (e.g., the 15
puzzle).

« A large context ties the task to a process, or alternately, an
algorithm may attempt to reconstruct the context at another
processes as opposed to communicating the context of the task
(e.g., 0/1 integer programming).

Characteristics of Task Interactions

« Tasks may communicate with each other in various ways. The
associated dichotomy is:

e Static Interactions: The tasks and their interactions are known a-
priori. These are relatively simpler to code into programs.

 Dynamic interactions: The timing or interacting tasks cannot be
determined a-priori. These interactions are harder to code,
especitally, as we shall see, using message passing APIs.

Characteristics of Task Interactions

Regular interactions: There is a definite pattern (in the graph sense)
to the interactions. These patterns can be exploited for efficient
implementation.

Irreqular interactions: Interactions lack well-defined topologies.

Characteristics of Task Interactions: Example

A simple example of a regular static interaction pattern is in image
dithering. The underlying communication pattern is a structured (2-D
mesh) one as shown here:

O OO, O 0 0 0 OO0 00
ONONORE OO0 0 0 OO0 00
ONOHORG 00 0 0O OO0 00
O 000 0000 000 0N
:>Tasks
,
0000 0000 (>:>\>:>/
ONONORG OO0 0 0 000 Q
ONONORG OO0 0 0 OO0 0 OnL
0000 0000 000 a
N
///>Pixels
O 000 OO0 00 O 00
O OO0 00 0 0 O 0 0O o)
0000 D000 000 d
ONOCRORG 00 0 0 OO0 00

Characteristics of Task Interactions: Example

The multiplication of a sparse matrix with a vector is a good example
of a static irregular interaction pattern. Here is an example of a
sparse matrix and its associated interaction pattern.

(]
(78]
W
> P>
2
@
o

91011

LIRS

Task 0

@0
000 —
o0 oo
o0

8 @

HNEEEEEEEEEE

Task 11

~
o
~
~_
S
~

Characteristics of Task Interactions

Interactions may be read-only or read-write.

In read-only interactions, tasks just read data items associated with
other tasks.

In read-write interactions tasks read, as well as modily data items
associated with other tasks.

In general, read-write interactions are harder to code, since they
require additional synchronization primitives.

Characteristics of Task Interactions

Interactions may be one-way or two-way.

A one-way interaction can be initiated and accomplished by one of
the two interacting tasks.

A two-way interaction requires participation from both tasks involved
In an interaction.

One way interactions are somewhat harder to code in message
passing APIs.

Mapping Techniques

Once a problem has been decomposed into concurrent tasks, these
must be mapped to processes (that can be executed on a parallel
platform).

Mappings must minimize overheads.
Primary overheads are communication and idling.

Minimizing these overheads often represents contradicting
objectives.

Assigning all work to one processor trivially minimizes
communication at the expense of significant idling.

Parallel Algorithm Models

An algorithm model is a way of structuring a parallel algorithm
by selecting a decomposition and mapping technique and applying
the appropriate strategy to minimize interactions.

Data Parallel Model: Tasks are statically (or semi-statically) mapped
to processes and each task performs similar operations on different

data.

Task Graph Model: Starting from a task dependency graph, the
interrelationships among the tasks are utilized to promote locality or
to reduce interaction costs.

Parallel Algorithm Models (continued)

Master-Slave Model: One or more processes generate work and
allocate it to worker processes. This allocation may be static or
dynamic.

Pipeline / Producer-Comsumer Model: A stream of data is passed
through a succession of processes, each of which perform some
task on it.

Hybrid Models: A hybrid model may be composed either of multiple
models applied hierarchically or multiple models applied sequentially
to different phases of a parallel algorithm.

Main Considerations to Develop Efficient
Parallel/Distributed Programs
= identification of parallelism
= program decomposition
= load balancing (static vs. dynamic)

= task granularity in the case of dynamic load
balancing

= communication patterns - overlapping
communication and computation

ECE 677 Salim Hariri/University of Arizona

