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a. BUS Network 

b. RING Network 

c. Hub-based Network 

switch switch 

Network Technologies  
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Physical Layer 

Data Link Layer 

Network Layer 

Transport Layer 

Session Layer 

Presentation Layer 

Application Layer 
Application 
Component 

Transport 
Component 

Network 
Component 
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Layered Protocols 

 A typical message as it appears on the network. 

2-2 
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Network Interface 
 

 more functions allocated to the network interface, 
the less load imposed on the host to process 
network functions 

  however, the cost of the network interface will 
increase 

HOST 
CPU 

I/O MEM 

Network Interface 

Network 

HOST CPU 

I / O MEM 

• Responsible for 

transferring data from 

 host memory to the 

communication medium  

and vice versa 

• Perform functions related 

to message assembly, 

formatting, routing and 

error control 

 

Tradeoff: 
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Architectural Models 

- Majority of dist.systems are based on this model 

- Share data between users and applications 

- Share file servers and directory servers 

- Share expensive peripheral equipment 

file server 
printing server computing server 

.  .  . workstations 

Workstation/Server Model 

Network 

 Server Model or client/server model 
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supercomputer 

multicomputer 

. 

. 

. 

processor array 

processor pool 

 servers 

.  .  . 

workstations 

Network 

terminals 

: 

. . . 

. . . 

• Rack full of CPUs which can be dynamically allocated to users on demand 

- Users given high-performance graphics terminals, such as X terminals 

- All the processors belong equally to everyone 

- Advantage: better utilization of resources 

- Disadvantages: increased communication between the application 

program and the terminal, and limited capabilities of terminals 

Pool Model 
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Network 

super computer 

terminals 

concentrator 

 servers 

. 
 .

  
. 

workstations 

. 
 .

  
. 

Has advantages of using networked resources and centralized computing systems 

- Each computer performs both the role of a server and the role of  a client 

- Computing resources managed by a single dist. operating system that makes them 

 appear to the user as a single image system 

- Global naming scheme is supported allowing individual computers to share data  

and files without regard to their location 

Hybrid Model 

- Viewed as a collection of three architectural models 

- Example:  Amoeba   system combines Server and Pool Models 

Integrated Model 
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Distributed Computing Paradigms: Layer 3 
 

 Layer 2 describes the architectural models, component 
properties and services 

 It describes what is required to build a distributed system 

 Layer 3, it describes how you program distributed 
applications; what techniques (models) do you use? 

 Also, it describes the types of tools that can be used to 
implement the applications 

There are two sub-layers:  

 Computational Model 

 Communication Model 
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 Functional Parallel Model 

 - Computers execute different threads of 
control,  

 - It is referred to as control parallelism, 
asynchronous  parallelism 

 - Client-Server Models are variations of this 
model 

F4 F3 

F2 F1 

START 

END 

F5 

F4 F3 

F2 F1 

START 

   END 

F5 

Shared Data 

Computer 1 

Computer 2 

(a) (b) 

 Limitations of Functional Parallelism 
     - Asynchronous interactions could    
        lead to data race conditions 
     - If the application has large 
        number of parallel tasks, it is 
        difficult to achieve good load 
        balancing 
  

Computational Model: 

Functional Model 
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F4 F3 

F2 F1 

START 

END 

F5 

F4 F3 

F2 F1 

START 

END 

F5 

Partitioned Shared Data 

Computer  1 Computer  2 

 Large number of problems 

can be solved using this 

model 

 It is easier to develop 

applications  

 

   Amount of parallelism in 

functional parallelism is 

fixed 

 Amount of parallelism in 

data parallelism scales with 

the data size 

 Generally speaking, 

efficient distributed 

applications should exploit 

both types of parallelism 

 

Computational Models: Data Model 
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 Communications Models 

 Message passing model 
 Messages are used to exchange information between local and remote 

processes as well as between processes and the operating system 

 Application developers need to explicitly involved in writing the 
communication and synchronization routines 

 Users use two basic communications primitives: SEND and RECEIVE 

 SEND and RECEIVE primitives have different implementations depending 
on whether or not they are blocking or Nonblocking, synchronous or asynchronous. 

 The main limitations are: 

            * synchronizing request and response messages 

  * handle data representations 

  * machine addresses 

  * handle system failures that could be related to communications network 
or    compute failures 

  * debugging and testing is difficult 
 



ECE 677 Salim Hariri/University of Arizona 

Distributed Shared Memory 

 In message passing model, the 
communication between processes is 
highly controlled by a protocol and 
involves explicit cooperation between 
processes 

 Direct shared memory 
communication is not explicitly 
controlled and requires the use of a 
global shared memory 

 Message communication resembles 
the operation of postal service in 
sending and receiving mail 

 The shared memory scheme can also 
be compared to a bulletin board, 
found in a grocery store or 
supermarket; it is a central repository 
for existing information that can be 
read or updated by anyone 

Shared Memory 

Memory 

CPU 

Memory 

CPU 

Memory 

CPU 

Network 

. . .  
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Distributed Computing Programming Paradigms 

 Distributed  Computing Models 

 What is Parallelism 

 Parallel Computing Models and Architectures 

 Data Parallel Model 

 Functional Parallel Model 

 Distributed Communication Models 

 Shared Memory, Distributed SM 

 Message Passing Model 

 Steps for Creating a Parallel/Distributed Program 

 Design and Performance Considerations 

 Message Passing Interface (MPI) 

 Running MPI Programs and Examples 
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Distributed Programming Paradigms: What is 
Parallelism? 
 A strategy for performing large, complex tasks faster.  

 A large task can either be performed serially, one step 
following another, or can be decomposed into smaller 
tasks to be performed simultaneously, i.e., in parallel.  

 Parallelism is done by:  

 Breaking up the task into smaller tasks  

 Assigning the smaller tasks to multiple workers to work on 
simultaneously  

 Coordinating the workers  

 Parallel problem solving is common. Examples: building 
construction; operating a large organization; automobile 
manufacturing plant  
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Distributed/Parallel Programming Paradigm 

 Parallel programming involves:  

 Decomposing an algorithm or data into parts  

 Distributing the parts as tasks which are worked 
on by multiple processors simultaneously  

 Coordinating work and communications of those 
processors  

 Parallel/Distributed  programming 
considerations:  

 Type of parallel model being used  

 Type of communication model being used  
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Steps for Writing a Parallel/Distributed Programs 
 If you are starting with an existing serial program, debug the serial code completely  

 Identify the parts of the program that can be executed concurrently:  

 Requires a thorough understanding of the algorithm  

 Exploit any inherent parallelism which may exist.  

 May require restructuring of the program and/or algorithm. May require an entirely new 
algorithm.  

 Decompose the program:  

 Functional Parallelism  

 Data Parallelism  

 Combination of both  

 Code development  

 Code may be influenced/determined by machine architecture  

 Choose a programming paradigm  

 Determine communication  

 Add code to accomplish task control and communications  

 Compile, Test, Debug  

 Optimization  

 Measure Performance  

 Locate Problem Areas  

 Improve them  
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Distributed Computing Models: Functional 
Parallel Model 

 
• Functional Decomposition 

(Functional Parallelism)  
 Decomposing the 
problem into different 
tasks which can be 
distributed to multiple 
processors for 
simultaneous execution  
 Good to use when there 
is not static structure or 
fixed determination of 
number of calculations to 
be performed  

 

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/function.decomp.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/function.decomp.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/function.decomp.gif
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Domain Decomposition (Data Parallelism)  

 
• Partitioning the problem's data domain and distributing 
portions to multiple processors for simultaneous 
execution  
• Good to use for problems where:  

• data is static (factoring and solving large matrix or 
finite difference calculations)  
• dynamic data structure tied to single entity where 
entity can be subsetted (large multi-body problems)  
• domain is fixed but computation within various 
regions of the domain is dynamic (fluid vortices 
models)  

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/domain.decomp.gif
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Domain Decomposition (Data Parallelism)  

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/domain.decomp.gif
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There are many ways to decompose data into 
partitions to be distributed 

 One Dimensional Data Distribution  

 Block Distribution  

 Cyclic Distribution  

 Two Dimensional Data Distribution  

 Block Block Distribution  

 Block Cyclic Distribution  

 Cyclic Block Distribution  

 
 

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/1d.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/1dblock.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/1dcyclic.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/2d.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/2dbb.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/2dbc.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/2dcb.gif
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Distributed Communication Models 

 Shared Memory 

 Message Passing 
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Memory Architectures  

 The way processors communicate is 
dependent upon memory architecture, 
which, in turn, will affect how you write 
your parallel program  

 The primary memory architectures are:  

 Shared Memory  

 Distributed Memory  
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Shared Memory 

 Multiple processors operate  

independently but share the same memory  

resources  

 Only one processor can access the  

shared memory location at a time  

 Synchronization achieved by controlling tasks' reading from and 
writing to the shared memory  

 Advantages  

 Easy for user to use efficiently  

 Data sharing among tasks is fast (speed of memory access)  

 Disadvantages  

 Memory is bandwidth limited. Increase of processors without increase of 
bandwidth can cause severe bottlenecks  

 User is responsible for specifying synchronization, e.g., locks  
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Multiple processors operate 
 independently but each has its own  
private memory  
Data is shared across  
a communications network using message 
 passing  
User responsible for synchronization  
using message passing  
Advantages  

Memory scalable to number of processors. Increase number of 
processors, size of memory and bandwidth increases.  
Each processor can rapidly access its own memory without 
interference  

Disadvantages  
Difficult to map existing data structures to this memory organization  
User responsible for sending and receiving data among processors  
To minimize overhead and latency, data should be blocked up in large 
chunks and shipped before receiving node needs it  
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Memory / Processor Arrangements  
 Distributed Memory  

 MPP - Massively Parallel Processor  

 Shared Memory  

 SMP - Symmetric Multiprocessor  

 Identical processors  

 Equal access to memory  

 Sometimes called UMA - Uniform Memory Access  

 or CC-UMA - Cache Coherent UMA  

 Cache coherent means if one processor updates a location in shared 
memory, all the other processors know about the update  

 NUMA - Non-Uniform Memory Access  

 Sometimes called CC-NUMA - Cache Coherent NUMA  

 Often made by linking two or more SMPs  

 One SMP can directly access memory of another SMP  

 Not all processors have equal access time to all memories  

 Memory access across link is slower  
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Memory / Processor Arrangements  

 Combinations  

 Multiple SMPs connected by a network  

 Processors within an SMP communicate via memory  

 Requires message passing between SMPs  

 One SMP can't directly access the memory of another SMP  

 Multiple distributed memory processors connected to a larger 
shared memory  

 Small fast memory can be used for supplying data to processors and 
large slower memory can be used for a backfill to the smaller memories  

 Similar to register <= cache memory <= main memory hierarchy  

 Transfer from local memory to shared memory would be transparent to 
the user  

 Probable design of the future with several processors and their local 
memory surrounding a larger shared memory on a single board  
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Communication Models: Message Passing 

 The message passing model is defined as:  

 set of processes using only local memory  

 processes communicate by sending and receiving 
messages  

 data transfer requires cooperative operations to be 
performed by each process (a send operation must have 
a matching receive)  

 Programming with message passing is done by linking 
with and making calls to libraries which manage the data 
exchange between processors. Message passing libraries 
are available for most modern programming languages.  
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Message Passing: Message Passing Interface (MPI)  

 standard portable message-passing library definition developed in 
1993 by a group of parallel computer vendors, software writers, 
and application scientists.  

 Available to both Fortran and C programs.  

 Available on a wide variety of parallel machines.  

 Target platform is a distributed memory system such as the SP.  

 All inter-task communication is by message passing.  

 All parallelism is explicit: the programmer is responsible for 
parallelism the program and implementing the MPI constructs.  

 Programming model is SPMD (Single Program Multiple Data)  
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Communication Primitives 

 Communications on distributed memory computers:  

 Point to Point  

 One to All Broadcast  

 All to All Broadcast  

 One to All Personalized  

 All to All Personalized  

 Shifts  

 Collective Computation  

    
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Point to Point 
 The most basic method of 

communication between two 
processors is the point to point 
message. The originating processor 
"sends" the message to the 
destination processor. The destination 
processor then "receives" the 
message.  

 The message commonly includes the 
information, the length of the 
message, the destination address and 
possibly a tag.  

 Typical message passing libraries 
subdivide the basic sends and 
receives into two types:  

 blocking - processing waits until 
message is transmitted  

 nonblocking - processing continues 
even if message hasn't been 
transmitted yet  

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/basic_msg.gif
http://www.mhpcc.edu/training/workshop/parallel_intro/gif/basic_msg.gif
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One to All Broadcast  

 A node may have 
information which all 
the others require. A 
broadcast is a message 
sent to many other 
nodes.  

 A One to All broadcast 
occurs when one 
processor sends the 
same information to 
many other nodes.    

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/broadcast.gif
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All to All Broadcast 

 With an All to 
All broadcast 
each 
processor 
sends its 
unique 
information to 
all the other 
processors. 

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/all2all.gif
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Shifts 

 Shifts are permutations of information. Information is 
exchanged in one logical direction or the other. Each 
processor exchanges the same amount of information 
with its neighbor processor.  

 There are two types of shifts: 

 Circular - Each processor exchanges information with its logical 
neighbor. When there is no longer a neighbor due to an edge of 
data the shift "wraps around" and takes the information from the 
opposite edge. 

 End Off Shift - When an edge occurs, the processor is padded 
with zero or a user defined value.  
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Collective Computation 

 In collective computation (reductions), one 
member of the group collects data from 
the other members. Commonly a 
mathematical operation like  

 min, max, add, multiple etc.  
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Design and Performance Considerations  

 Amdahl's Law states that potential program speedup is 
defined by the fraction of code (P) which can be 
parallelized:  

  speedup = 1 / (1 – P) 

 If none of the code can be parallelized, p= 0 and the speedup = 1 (no 
speedup). If all of the code is parallelized, p = 1 and the speedup is infinite 
(in theory). If 50% of the code can be parallelized, maximum speedup = 2, 
meaning the code will run twice as fast.  

 Introducing the number of processors performing the parallel fraction of 
work, the relationship can be modeled by:  

 speedup = 1 / (P/N +S)  

 where P = parallel fraction, N = number of processors and S = serial 
fraction. 

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/amdahl1.gif
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Scalability of the Problem 

                -------------------------------- 
       N        P = .50      P = .90     P = .99 
     -----      -------      -------     ------- 
        10         1.82         5.26        9.17 
       100         1.98         9.17       50.25      
      1000         1.99         9.91       90.99 
     10000         1.99         9.91       99.02 

 

Speedup 

It soon becomes obvious that there are limits to the scalability of 
parallelism.  
For example, at P = .50, .90 and .99 (50%, 90% and 99% of the 
code is parallelizable): 
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Scalable Problems 

 However, certain problems demonstrate increased 
performance by increasing the problem size. For example:  

 2D Grid Calculations 85 seconds 85%  

 Serial fraction 15 seconds 15%  

 We can increase the problem size by halving both the grid 
points and the time step, which is directly proportional to 
the grid spacing. This results in four times the number of 
grid points (factor of two in each direction) and twice the 
number of time steps. The timings then look like:  

 2D Grid Calculations 680 seconds 97.84%  

 Serial fraction 15 seconds 2.16%  

 Problems which increase the percentage of parallel time 
with their size are more "scalable" than problems with a 
fixed percentage of parallel time. 
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Communication Patterns and Bandwidth 

 For some problems, increasing the number of processors 
will:  

 Decrease the execution time attributable to computation  

 But also, increase the execution time attributable to communication  

 The time required for communication is dependent upon a 
given system's communication bandwidth parameters.  

 For example, the time (t) required to send W words 
between any two processors is: 

   t = L + W/B  

where L = latency and B = hardware bitstream rate in words 
per second.  

 Latency can be thought of as the time required to send a 
zero byte message  
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Communication Patterns and Bandwidth 

 Communication patterns also affect the 
computation to communication ratio.  

 For example, gather-scatter 
communications between a single processor 
and N other processors will be impacted 
more by an increase in latency than N 
processors communicating only with 
nearest neighbors.  
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I/O Patterns 

 I/O operations are generally regarded as inhibitors to 
parallelism  

 Parallel I/O systems are as yet, largely undefined and not 
available  

 In an environment where all processors see the same 
filespace, write operations will result in file overwriting  

 Read operations will be affected by the fileserver's ability 
to handle multiple read requests at the same time  

 I/O which must be conducted over the network (non-local) 
can cause severe bottlenecks  
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Improving I/O Performance 

 Reduce overall I/O as much as possible  

 Confine I/O to specific serial portions of the job  
 For example, Task 1 could read an input file and then 

communicate required data to other tasks. Likewise, Task 1 
could perform write operation after receiving required data from 
all other tasks.  

 Create unique filenames for each tasks' 
input/output file(s)  

 For distributed memory systems with shared 
filespace, perform I/O in local, non-shared 
filespace  
 For example, each processor may have /tmp filespace which 

can used. This is usually much more efficient than performing 
I/O over the network to one's home directory.  

 



Principles of Parallel Algorithm Design 

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar 

To accompany the text “Introduction to Parallel Computing”, 

Addison Wesley, 2003. 



Chapter Overview: Algorithms and Concurrency  

• Introduction to Parallel Algorithms  

– Tasks and Decomposition  

– Processes and Mapping  

– Processes Versus Processors  

• Decomposition Techniques  

– Recursive Decomposition  

– Recursive Decomposition  

– Exploratory Decomposition  

– Hybrid Decomposition  

• Characteristics of Tasks and Interactions  

– Task Generation, Granularity, and Context  

– Characteristics of Task Interactions.  



Chapter Overview: Concurrency and Mapping 

• Mapping Techniques for Load Balancing  

– Static and Dynamic Mapping  

• Methods for Minimizing Interaction Overheads  

– Maximizing Data Locality  

– Minimizing Contention and Hot-Spots  

– Overlapping Communication and Computations  

– Replication vs. Communication  

– Group Communications vs. Point-to-Point Communication  

• Parallel Algorithm Design Models  

– Data-Parallel, Work-Pool, Task Graph, Master-Slave, Pipeline, and 

Hybrid Models  

 



Preliminaries: Decomposition, Tasks, and  

Dependency Graphs 

• The first step in developing a parallel algorithm is to decompose the 

problem into tasks that can be executed concurrently  

• A given problem may be docomposed into tasks in many different 

ways.  

• Tasks may be of same, different, or even interminate sizes.  

• A decomposition can be illustrated in the form of a directed graph 

with nodes corresponding to tasks and edges indicating that the 

result of one task is required for processing the next. Such a graph 

is called a task dependency graph.   



Example: Multiplying a Dense Matrix with a Vector 

Computation of each element of output vector y is independent of other 

elements. Based on this, a dense matrix-vector product can be decomposed 

into n tasks. The figure highlights the portion of the matrix and vector accessed 

by Task 1.  

 

Observations: While tasks share data (namely, the vector b ), they do 

not have any control dependencies - i.e., no task needs to wait for the 

(partial) completion of any other. All tasks are of the same size in terms 

of number of operations. Is this the maximum number of tasks we could 

decompose this problem into?  



Example: Database Query Processing  

Consider the execution of the query: 

MODEL = ``CIVIC'' AND YEAR = 2001 AND 

 (COLOR = ``GREEN'' OR COLOR = ``WHITE)  

on the following database:  

ID#  Model  Year  Color  Dealer  Price  

4523  Civic  2002  Blue  MN  $18,000  

3476  Corolla  1999  White  IL  $15,000  

7623  Camry  2001  Green  NY  $21,000  

9834  Prius  2001  Green  CA  $18,000  

6734  Civic  2001  White  OR  $17,000  

5342  Altima  2001  Green  FL  $19,000  

3845  Maxima  2001  Blue  NY  $22,000  

8354  Accord  2000  Green  VT  $18,000  

4395  Civic  2001  Red  CA  $17,000  

7352  Civic  2002  Red  WA  $18,000  



Example: Database Query Processing 

The execution of the query can be divided into subtasks in various 

ways. Each task can be thought of as generating an intermediate 

table of entries that satisfy a particular clause.  

Decomposing the given query into a number of tasks. 

Edges in this graph denote that the output of one task 

is needed to accomplish the next. 



Example: Database Query Processing  

Note that the same problem can be decomposed into subtasks in other 

ways as well.  

An alternate decomposition of the given problem into 

subtasks, along with their data dependencies. 

Different task decompositions may lead to significant differences with 

respect to their eventual parallel performance.  



Granularity of Task Decompositions  

• The number of tasks into which a problem is decomposed 

determines its granularity.  

• Decomposition into a large number of tasks results in fine-grained 

decomposition and that into a small number of tasks results in a 

coarse grained decomposition.  

 A coarse grained counterpart to the dense matrix-vector product 

example. Each task in this example corresponds to the computation of three 

elements of the result vector.  



Degree of Concurrency  

• The number of tasks that can be executed in parallel is the degree 
of concurrency of a decomposition.  

• Since the number of tasks that can be executed in parallel may 
change over program execution, the maximum degree of 
concurrency is the maximum number of such tasks at any point 
during execution. What is the maximum degree of concurrency of 
the database query examples?  

• The average degree of concurrency is the average number of tasks 
that can be processed in parallel over the execution of the program. 
Assuming that each tasks in the database example takes identical 
processing time, what is the average degree of concurrency in each 
decomposition?  

• The degree of concurrency increases as the decomposition 
becomes finer in granularity and vice versa.  

 



Critical Path Length  

• A directed path in the task dependency graph represents a 

sequence of tasks that must be processed one after the other.  

• The longest such path determines the shortest time in which the 

program can be executed in parallel.  

• The length of the longest path in a task dependency graph is called 

the critical path length.  

 



Critical Path Length  

Consider the task dependency graphs of the two database query 

decompositions:  

 What are the critical path lengths for the two task dependency graphs? 

If each task takes 10 time units, what is the shortest parallel execution time 

for each decomposition? How many processors are needed in each case to 

achieve this minimum parallel execution time? What is the maximum 

degree of concurrency?  



Limits on Parallel Performance  

• It would appear that the parallel time can be made arbitrarily small 
by making the decomposition finer in granularity.  

• There is an inherent bound on how fine the granularity of a 
computation can be. For example, in the case of multiplying a dense 
matrix with a vector, there can be no more than (n2) concurrent 
tasks.  

• Concurrent tasks may also have to exchange data with other tasks. 
This results in communication overhead. The tradeoff between the 
granularity of a decomposition and associated overheads often 
determines performance bounds.  

 



Task Interaction Graphs  

• Subtasks generally exchange data with others in a decomposition. 

For example, even in the trivial decomposition of the dense matrix-

vector product, if the vector is not replicated across all tasks, they 

will have to communicate elements of the vector.  

• The graph of tasks (nodes) and their interactions/data exchange 

(edges) is referred to as a task interaction graph.  

• Note that task interaction graphs represent data dependencies, 

whereas task dependency graphs represent control dependencies.  

 



Task Interaction Graphs: An Example  

  Consider the problem of multiplying a sparse matrix A with a 

vector b. The following observations can be made: 

• As before, the computation of each element of the result vector can be 

viewed as an independent task.  

• Unlike a dense matrix-vector product though, only non-zero elements of 

matrix A participate in the computation.  

• If, for memory optimality, we also partition b across tasks, then one can see 

that the task interaction graph of the computation is identical to the graph of 

the matrix A (the graph for which A represents the adjacency structure).  



Task Interaction Graphs, Granularity, and 

Communication  

  In general, if the granularity of a decomposition is finer, the 

associated overhead (as a ratio of useful work assocaited with a 

task) increases.  

 Example: Consider the sparse matrix-vector product example from 

previous foil. Assume that each node takes unit time to process and 

each interaction (edge) causes an overhead of a unit time.  

  Viewing node 0 as an independent task involves a useful 

computation of one time unit and overhead (communication) of three 

time units.  

  Now, if we consider nodes 0, 4, and 5 as one task, then the 

task has useful computation totaling to three time units and 

communication corresponding to four time units (four edges). 

Clearly, this is a more favorable ratio than the former case.  

 



Processes and Mapping  

• In general, the number of tasks in a decomposition exceeds the 
number of processing elements available.  

 

• For this reason, a parallel algorithm must also provide a mapping of 
tasks to processes.  

 

 Note: We refer to the mapping as being from tasks to processes, as 
opposed to processors. This is because typical programming APIs, as we 
shall see, do not allow easy binding of tasks to physical processors. Rather, 
we aggregate tasks into processes and rely on the system to map these 
processes to physical processors. We use processes, not in the UNIX sense 
of a process, rather, simply as a collection of tasks and associated data.   



Processes and Mapping  

• Appropriate mapping of tasks to processes is critical to the parallel 

performance of an algorithm.  

• Mappings are determined by both the task dependency and task 

interaction graphs.  

• Task dependency graphs can be used to ensure that work is equally 

spread across all processes at any point (minimum idling and 

optimal load balance).  

• Task interaction graphs can be used to make sure that processes 

need minimum interaction with other processes (minimum 

communication).  

 



Processes and Mapping  

An appropriate mapping must minimize parallel execution time by:  

 

• Mapping independent tasks to different processes.  

 

• Assigning tasks on critical path to processes as soon as they 
become available.  

 

• Minimizing interaction between processes by mapping tasks with 
dense interactions to the same process.  

 

 Note: These criteria often conflict eith each other. For example, a 
decomposition into one task (or no decomposition at all) minimizes 
interaction but does not result in a speedup at all! Can you think of 
other such conflicting cases?  



Processes and Mapping: Example  

  Mapping tasks in the database query decomposition to 

processes. These mappings were arrived at by viewing the 

dependency graph in terms of levels (no two nodes in a level have 

dependencies). Tasks within a single level are then assigned to 

different processes.  



Decomposition Techniques  

 So how does one decompose a task into various subtasks?  

  

 While there is no single recipe that works for all problems, we 

present a set of commonly used techniques that apply to broad 

classes of problems. These include:  

 

• recursive decomposition  

• data decomposition  

• exploratory decomposition  

• speculative decomposition  

 



Recursive Decomposition  

• Generally suited to problems that are solved using the divide-and-

conquer strategy.  

 

• A given problem is first decomposed into a set of sub-problems.  

 

• These sub-problems are recursively decomposed further until a 

desired granularity is reached.  

 

 



Recursive Decomposition: Example  

A classic example of a divide-and-conquer algorithm on which we 

can apply recursive decomposition is Quicksort.  

 In this example, once the list has been partitioned around the pivot, each 

sublist can be processed concurrently (i.e., each sublist represents an 

independent subtask). This can be repeated recursively.  



Recursive Decomposition: Example  

 The problem of finding the minimum number in a given list (or 

indeed any other associative operation such as sum, AND, etc.) can 

be fashioned as a divide-and-conquer algorithm. The following 

algorithm illustrates this.  

  We first start with a simple serial loop for computing the 

minimum entry in a given list:  

 
 1. procedure SERIAL_MIN (A, n)  

 2. begin 

 3. min = A[0]; 

 4. for i := 1 to n − 1 do 

 5.   if (A[i] < min) min := A[i]; 

 6. endfor; 

 7. return min; 

 8. end SERIAL_MIN 



Recursive Decomposition: Example 

 We can rewrite the loop as follows:  

 

 
 1. procedure RECURSIVE_MIN (A, n)  

2. begin  

3. if ( n = 1 ) then  

4.  min := A [0]  ;  

5. else  

6.  lmin := RECURSIVE_MIN ( A, n/2 );  

7.  rmin := RECURSIVE_MIN (  &(A[n/2]), n - n/2 );  

8.  if (lmin  < rmin) then  

9.   min := lmin;  

10.  else  

11.   min := rmin;  

12.  endelse;  

13. endelse;  

14. return min;  

15. end RECURSIVE_MIN  

 

 



Recursive Decomposition: Example 

 The code in the previous foil can be decomposed naturally using a 

recursive decomposition strategy. We illustrate this with the 

following example of finding the minimum number in the set {4, 9, 1, 

7, 8, 11, 2, 12}. The task dependency graph associated with this 

computation is as follows:  



Data Decomposition  

• Identify the data on which computations are performed.  

• Partition this data across various tasks.  

• This partitioning induces a decomposition of the problem.  

• Data can be partitioned in various ways - this critically impacts 

performance of a parallel algorithm.  



Data Decomposition: Output Data Decomposition  

• Often, each element of the output can be computed independently 

of others (but simply as a function of the input).  

• A partition of the output across tasks decomposes the problem 

naturally.  



Output Data Decomposition: Example  

 Consider the problem of multiplying two n x n matrices A and B to 

yield matrix C. The output matrix C can be partitioned into four tasks 

as follows:  

Task 1:  

Task 2: 

Task 3: 

Task 4:  



Output Data Decomposition: Example  

 A partitioning of output data does not result in a unique decomposition into 

tasks. For example, for the same problem as in previus foil, with identical 

output data distribution, we can derive the following two (other) 

decompositions:  

Decomposition I Decomposition II 

Task 1:  C1,1 = A1,1 B1,1   

Task 2:  C1,1 = C1,1 + A1,2 B2,1  

Task 3:  C1,2 = A1,1 B1,2  

Task 4:  C1,2 = C1,2 + A1,2 B2,2  

Task 5:  C2,1 = A2,1 B1,1  

Task 6:  C2,1 = C2,1 + A2,2 B2,1  

Task 7:  C2,2 = A2,1 B1,2  

Task 8:  C2,2 = C2,2 + A2,2 B2,2  

Task 1:  C1,1 = A1,1 B1,1    

Task 2:  C1,1 = C1,1 + A1,2 B2,1  

Task 3:  C1,2 = A1,2 B2,2  

Task 4:  C1,2 = C1,2 + A1,1 B1,2  

Task 5:  C2,1 = A2,2 B2,1  

Task 6:  C2,1 = C2,1 + A2,1 B1,1  

Task 7:  C2,2 = A2,1 B1,2  

Task 8:  C2,2 = C2,2 + A2,2 B2,2  



Output Data Decomposition: Example  

 Consider the problem of counting the instances of given itemsets in a 

database of transactions. In this case, the output (itemset frequencies) can 

be partitioned across tasks.  



Output Data Decomposition: Example  

 From the previous example, the following observations can be 

made:  

 

• If the database of transactions is replicated across the processes, 

each task can be independently accomplished with no 

communication.  

• If the database is partitioned across processes as well (for reasons 

of memory utilization), each task first computes partial counts. 

These counts are then aggregated at the appropriate task.  

 



Input Data Partitioning  

• Generally applicable if each output can be naturally computed as a 

function of the input.  

• In many cases, this is the only natural decomposition because the 

output is not clearly known a-priori (e.g., the problem of finding the 

minimum in a list, sorting a given list, etc.).  

• A task is associated with each input data partition. The task 

performs as much of the computation with its part of the data. 

Subsequent processing combines these partial results.  



Input Data Partitioning: Example  

 In the database counting example, the input (i.e., the transaction 

set) can be partitioned. This induces a task decomposition in which 

each task generates partial counts for all itemsets. These are 

combined subsequently for aggregate counts.  



Partitioning Input and Output Data  

 Often input and output data decomposition can be combined for a 

higher degree of concurrency. For the itemset counting example, the 

transaction set (input) and itemset counts (output) can both be 

decomposed as follows:  



Intermediate Data Partitioning  

• Computation can often be viewed as a sequence of transformation 

from the input to the output data.  

• In these cases, it is often beneficial to use one of the intermediate 

stages as a basis for decomposition.  

 



Intermediate Data Partitioning: Example  

 Let us revisit the example of dense matrix multiplication. We first 

show how we can visualize this computation in terms of 

intermediate matrices  D.  



Intermediate Data Partitioning: Example  
 A decomposition of intermediate data structure   leads to the following 

decomposition into 8 + 4 tasks:  

Stage I 

Stage II 

Task 01:  D1,1,1= A1,1 B1,1 Task 02:  D2,1,1= A1,2 B2,1 

Task 03:  D1,1,2= A1,1 B1,2 Task 04:  D2,1,2= A1,2 B2,2 

Task 05:  D1,2,1= A2,1 B1,1 Task 06:  D2,2,1= A2,2 B2,1 

Task 07:  D1,2,2= A2,1 B1,2 Task 08:  D2,2,2= A2,2 B2,2 

Task 09:  C1,1 = D1,1,1 + D2,1,1 Task 10:  C1,2 = D1,1,2 + D2,1,2 

Task 11:  C2,1 = D1,2,1 + D2,2,1 Task 12:  C2,,2 = D1,2,2 + D2,2,2 



Intermediate Data Partitioning: Example  

 The task dependency graph for the decomposition (shown in 

previous foil) into 12 tasks is as follows:  



The Owner Computes Rule  

• The Owner Computes Rule generally states that the process 

assined a particular data item is responsible for all computation 

associated with it.  

• In the case of input data decomposition, the owner computes rule 

imples that all computations that use the input data are performed 

by the process.  

• In the case of output data decomposition, the owner computes rule 

implies that the output is computed by the process to which the 

output data is assigned.  



Exploratory Decomposition  

• In many cases, the decomposition of the problem goes hand-in-

hand with its execution.  

• These problems typically involve the exploration (search) of a state 

space of solutions.  

• Problems in this class include a variety of discrete optimization 

problems (0/1 integer programming, QAP, etc.), theorem proving, 

game playing, etc.  



Exploratory Decomposition: Example  

 A simple application of exploratory decomposition is in the solution 

to a 15 puzzle (a tile puzzle). We show a sequence of three moves 

that transform a given initial state (a) to desired final state (d).  

 Of-course, the problem of computing the solution, in general, is 

much more difficult than in this simple example.  



Exploratory Decomposition: Example  

 The state space can be explored by generating various successor 

states of the current state and to view them as independent tasks.  



Speculative Decomposition  

• In some applications, dependencies between tasks are not known a-

priori.  

• For such applications, it is impossible to identify independent tasks.  

• There are generally two approaches to dealing with such 

applications: conservative approaches, which identify independent 

tasks only when they are guaranteed to not have dependencies, 

and, optimistic approaches, which schedule tasks even when they 

may potentially be erroneous.  

• Conservative approaches may yield little concurrency and optimistic 

approaches may require roll-back mechanism in the case of an 

error.  



Speculative Decomposition: Example  

 A classic example of speculative decomposition is in discrete event 

simulation.  

• The central data structure in a discrete event simulation is a time-

ordered event list.  

• Events are extracted precisely in time order, processed, and if 

required, resulting events are inserted back into the event list.  

• Consider your day today as a discrete event system - you get up, 

get ready, drive to work, work, eat lunch, work some more, drive 

back, eat dinner, and sleep.  

• Each of these events may be processed independently, however, in 

driving to work, you might meet with an unfortunate accident and not 

get to work at all.  

• Therefore, an optimistic scheduling of other events will have to be 

rolled back.  

 



Speculative Decomposition: Example  

 Another example is the simulation of a network of nodes (for 

instance, an assembly line or a computer network through which 

packets pass). The task is to simulate the behavior of this network 

for various inputs and node delay parameters (note that networks 

may become unstable for certain values of service rates, queue 

sizes, etc.).  



Hybrid Decompositions  

 Often, a mix of decomposition techniques is necessary for 

decomposing a problem. Consider the following examples:  

• In quicksort, recursive decomposition alone limits concurrency (Why?). A 

mix of data and recursive decompositions is more desirable.  

• In discrete event simulation, there might be concurrency in task processing. 

A mix of speculative decomposition and data decomposition may work well.  

• Even for simple problems like finding a minimum of a list of numbers, a mix 

of data and recursive decomposition works well.  



Characteristics of Tasks  

 Once a problem has been decomposed into independent tasks, the 

characteristics of these tasks critically impact choice and 

performance of parallel algorithms. Relevant task characteristics 

include:  

• Task generation.  

• Task sizes.  

• Size of data associated with tasks.  

 



Task Generation  

• Static task generation: Concurrent tasks can be identified a-priori. 

Typical matrix operations, graph algorithms, image processing 

applications, and other regularly structured problems fall in this 

class. These can typically be decomposed using data or recursive 

decomposition techniques.  

• Dynamic task generation: Tasks are generated as we perform 

computation. A classic example of this is in game playing - each 15 

puzzle board is generated from the previous one. These applications 

are typically decomposed using exploratory or speculative 

decompositions.  



Task Sizes  

• Task sizes may be uniform (i.e., all tasks are the same size) or non-

uniform.  

• Non-uniform task sizes may be such that they can be determined (or 

estimated) a-priori or not.  

• Examples in this class include discrete optimization problems, in 

which it is difficult to estimate the effective size of a state space.  



Size of Data Associated with Tasks  

• The size of data associated with a task may be small or large when 

viewed in the context of the size of the task.  

• A small context of a task implies that an algorithm can easily 

communicate this task to other processes dynamically (e.g., the 15 

puzzle).  

• A large context ties the task to a process, or alternately, an 

algorithm may attempt to reconstruct the context at another 

processes as opposed to communicating the context of the task 

(e.g., 0/1 integer programming).  



Characteristics of Task Interactions  

• Tasks may communicate with each other in various ways. The 

associated dichotomy is:  

• Static interactions: The tasks and their interactions are known a-

priori. These are relatively simpler to code into programs.  

• Dynamic interactions: The timing or interacting tasks cannot be 

determined a-priori. These interactions are harder to code, 

especitally, as we shall see, using message passing APIs. 



Characteristics of Task Interactions  

• Regular interactions: There is a definite pattern (in the graph sense) 

to the interactions. These patterns can be exploited for efficient 

implementation.  

• Irregular interactions: Interactions lack well-defined topologies.  



Characteristics of Task Interactions: Example  

 A simple example of a regular static interaction pattern is in image 

dithering. The underlying communication pattern is a structured (2-D 

mesh) one as shown here:  



Characteristics of Task Interactions: Example  

 The multiplication of a sparse matrix with a vector is a good example 

of a static irregular interaction pattern. Here is an example of a 

sparse matrix and its associated interaction pattern.  



Characteristics of Task Interactions  

• Interactions may be read-only or read-write.  

• In read-only interactions, tasks just read data items associated with 

other tasks.  

• In read-write interactions tasks read, as well as modily data items 

associated with other tasks.  

• In general, read-write interactions are harder to code, since they 

require additional synchronization primitives.  



Characteristics of Task Interactions  

• Interactions may be one-way or two-way.  

• A one-way interaction can be initiated and accomplished by one of 

the two interacting tasks.  

• A two-way interaction requires participation from both tasks involved 

in an interaction.  

• One way interactions are somewhat harder to code in message 

passing APIs.  



Mapping Techniques  

• Once a problem has been decomposed into concurrent tasks, these 

must be mapped to processes (that can be executed on a parallel 

platform).  

• Mappings must minimize overheads.  

• Primary overheads are communication and idling.  

• Minimizing these overheads often represents contradicting 

objectives.  

• Assigning all work to one processor trivially minimizes 

communication at the expense of significant idling.  



Parallel Algorithm Models  

  An algorithm model is a way of structuring a parallel algorithm 

by selecting a decomposition and mapping technique and applying 

the appropriate strategy to minimize interactions.  

 

• Data Parallel Model: Tasks are statically (or semi-statically) mapped 

to processes and each task performs similar operations on different 

data.  

• Task Graph Model: Starting from a task dependency graph, the 

interrelationships among the tasks are utilized to promote locality or 

to reduce interaction costs.  

 



Parallel Algorithm Models (continued)  

• Master-Slave Model: One or more processes generate work and 

allocate it to worker processes. This allocation may be static or 

dynamic.  

• Pipeline / Producer-Comsumer Model: A stream of data is passed 

through a succession of processes, each of which perform some 

task on it.  

• Hybrid Models: A hybrid model may be composed either of multiple 

models applied hierarchically or multiple models applied sequentially 

to different phases of a parallel algorithm.  
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Main Considerations to Develop Efficient 
Parallel/Distributed Programs 

 identification of parallelism  

 program decomposition  

 load balancing (static vs. dynamic)  

 task granularity in the case of dynamic load 
balancing  

 communication patterns - overlapping 
communication and computation  

 


